• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 8
  • 1
  • Tagged with
  • 65
  • 63
  • 57
  • 36
  • 21
  • 19
  • 19
  • 17
  • 17
  • 16
  • 15
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis and Application of Poly(arylene ether)s for Proton Exchange Membrane

Chu, Meng-Han 21 July 2012 (has links)
Proton Exchange Membrane Fuel Cell has the potential to become an important energy conversion technigne. Lots of efforts oriented toward the electrochemical conversion of energy using proton exchange membrane (PEM) fuel cells have been enormously accelerated with the hope to promote as an alternative power source for transport and portable purposes. However, they still suffer from such disadvantages as limited operation temperature, high cost, insufficient durability and high methanol permeability.Good membranes should meet several strict requirements as follows; reasonable proton conductivity, high stability and durny the performance of a fuel cell environment,outstanding mechanical toughness, high heat endurance, and impermeability to fuel gas or liquid. Presently,a lot of references have mentioned some sulfonatied polymer sulfonated of poly(ether ether ketone) (SPEEK), sulfonatedpolysulfone (SPSF), sulfonated polysulfide sulfone(SPSS), and polybenzimidazole(PBI) and so on.To achieve high proton conductivity usually match with a high degree of sulfonation that means owning a large Ion Exchange Capacity, IEC.But which in turn leads to a decrease in the electrochemical¡Bdimensional stability¡Bwater uptake¡Boxidative stability. Therefore they suffer from such disadvantages as limited operation range of temperature.Three aromatic poly(arylene ether)s P4b¡BP4c¡BP4d were synthesized from the polymer consists nine of polyaromatic groups with bisfluoride monomer at studying long time in our laboratory with S1¡BS2¡BS3 diol monomer.The molecular weight of the polymer (Mw:1.49¡Ñ105~5.3¡Ñ105 g/mol ,PDI: 1.82~2)This polymer has high strength,thermal stability and all of polymers own very high Td ,which are over than 500oC.We sulfonatied the polymer in order to apply as the proton exchange membrane of a fuel cell.The results showed after sulfonation of P4b¡BP4c¡BP4d.All IEC reaches 3.9~1(meq/g).According to above result, we propose the aromatic poly(arylene ether)s is good matenal can be used on all application as a proton exchange membrane.
22

Gas Permeation Properties Of Poly(arylene Ether Ketone) And Its Mixed Matrix Membanes With Polypyrrole

Mergen, Gorkem 01 January 2003 (has links) (PDF)
For the last two decades, the possibility of using synthetic membranes for industrial gas separations has attracted considerable interest since membrane separation technologies have the advantages of energy efficiency, simplicity and low cost. However, for wider commercial utilization there is still a need to develop membranes with higher permeant fluxes and higher transport selectivities. Conductive polymers, due to their high gas transport selectivities, give rise to a new class of polymeric materials for membrane based gas separation though poor mechanical properties obstruct the applications for this purpose of use. This problem led researches to a new idea of combining the conducting polymers with insulating polymers forming mixed matrix composite membranes. In the previous studies in our group, polypyrrole was chosen as the conductive polymer, and different preparation techniques were tried and optimized for membrane application. As the insulating polymer, previously poly(bisphenol-Acarbonate) was used to support the conductive polymer filler in order to constitute a conductive composite membrane. For this study, as the polymer matrix, hexafluorobisphenol A based poly(arylene ether ketone) was targeted due to its physical properties and temperature resistance which can be important for industrial applications. First of all, permeabilities of N2, CH4, Ar, H2, CO2, and H2 were measured at varying temperatures ranging from 25&deg / C to 85&deg / C through a homogenous dense membrane of chosen polymeric material to characterize its intrinsic properties. Measurements were done using laboratory scale gas separation apparatus which makes use of a constant volume variable pressure technique. The permeability results were used for the calculations of permeation activation energies for each gas. These permeation activation energies were found to be differing slightly for each gas independently from the kinetic diameters of gases. In this study, mixed matrix membranes of conducting polymer, polypyrrole (PPy) and insulating polymer, hexafluorobisphenol A based poly(arylene ether ketone) (PAEK) were also prepared. It was observed that PAEK and PPy form a composite mixed matrix structure, which can function as permselective membrane. The effect of conducting polymer filler content was investigated with two different filler ratios. When comparing with the pure PAEK membranes, meaningful increases for both permeability and selectivity were obtained for some of the gases.
23

Synthesis and Characterization of New Aryl Phosphine Oxide and Ketone Containing Poly(arylene Sulfide Sulfone)s

Liu, Yongning 14 October 1998 (has links)
High molecular weight poly(phenylene sulfide sulfone) (PPSS) homo- and statistical copolymers have been reproducably synthesized using a known, but complex procedure utilizing 4,4'-dichlorodiphenyl sulfone (DCDPS), sodium hydrosulfide, sodium hydroxide, sodium acetate, and deionized water, in NMP at elevated reaction temperatures and pressure. The effect of these variations, e.g., reaction temperatures and times, molar ratios of H2O-to-NaSH, NMP-to-H2O, etc. were investigated. Optimized conditions were defined, which produced Tg as high as 222°C, very high refractive index (1.70), and tough/solvent resistant films could be prepared by melt fabrication. A two-stage decomposition mechanism in air was demonstrated by dynamic thermal gravimetric analysis. The melt stability of PPSS was improved by incorporating thermally stable endgroups, such as diphenyl sulfone, 4-chlorophenylphenyl sulfone, and t-butylphenoxide. The chemical structures of the endgroups were confirmed by 13C and 1H NMR spectra. Compared with mercaptide endcapped PPSS, the new systems showed higher initial degradation temperatures (2% and 5% weight loss), higher char yield at 650°C in air and a more stable melt viscosity at 300°C. A greatly simplified synthesis of both homo and copolymers has been successfully developed using the new A-A or A-B type thiol-functional monomers, such as bis-(4-mercaptophenyl) sulfone, 4-chloro-4'-mercaptodiphenyl sulfone and 4-chloro-4'-mercapto benzophenone, instead of sodium hydrosulfide. A series of high molecular weight triphenyl phosphine oxide and/or diphenyl ketone containing PPSS copolymers were subsequently synthesized from the bis-(4-mercaptophenyl) sulfone by reaction with 4,4'-dichlorodiphenyl sulfone, bis-(4-fluorophenyl) phenyl phosphine oxide, and 4,4'-difluorobenzophenone in DMAc in the presence of K2CO3 at 160°C. The new phosphine oxide containing PPSS copolymers were completely amorphous, showed improved solubility in common organic solvents and exhibited very high char yields in air at 750°C. Surface (XPS) analysis results suggested that the phosphorus moieties in the polymer backbone can form phosphate-like layers on the polymer surface which protects the inner materials from further decomposition in air at high temperatures. The diphenyl ketone containing PPSS copolymers showed very high char yields at 750°C in a nitrogen atmosphere, compared to sulfide sulfone homopolymer and phosphine oxide containing copolymers, possibly because of higher bond energies. Semi-crystalline poly(phenylene sulfide ketone) homopolymers and sulfone containing copolymers with sulfone/ketone mole ratio (S : K) < 25 : 75 were synthesized by a novel base catalyzed self-polycondensation of 4-chloro-4'-mercaptodiphenyl sulfone and/or 4-chloro-4'-mercapto benzophenone in N-cyclohexyl-2-pyrrolidinone (CHP) at 290°C. Amorphous copolymers with S : K ratios > 25 : 75 were prepared in DMAc at 160°C. These materials exhibited an increase in glass transition temperature with increasing sulfone content. TGA and micro cone calorimetry analyses showed that the semi-crystalline materials with high ketone content had much higher char yields and significantly lower heat release rate and total heat release, compared to the poly(phenylene sulfide sulfone) and poly(pheylene sulfide) controls. / Ph. D.
24

Structure-Property Relationships of N-Heterocycle Functionalized Triphenylphosphine Oxide-Based Poly (Arylene Ether)s

Meyer, Luke January 2018 (has links)
No description available.
25

Introducing Functionality to Poly(arylene ether)s via Modification of Diphenyl sulfone – type Monomers

Humayun, Zahida 04 June 2020 (has links)
No description available.
26

Functionalized Sulfone and Sulfonamide Based Poly(arylene ether)s

Andrejevic, Marina 05 August 2014 (has links)
No description available.
27

Routes to N-Heterocycle Functionalized Poly(arylene ether sulfone)s

Picker, Jesse L. 03 September 2014 (has links)
No description available.
28

Exploration Using Reaction Temperature to Tailor the Degree of Order in Micro-Block Copolymer Proton Exchange Membranes

Buquoi, John Quentin, III 07 June 2010 (has links)
No description available.
29

Iodo Containing Sulfone and Sulfonamide Based Poly(arylene ether)s

Constandinidis, Fadwa G. 27 August 2013 (has links)
No description available.
30

Tuning the Physical Properties of Poly(arylene ether)s Prepared from 3,5-Difluorobenzene Sulfonamides

Mitton, Renata 12 August 2015 (has links)
No description available.

Page generated in 0.046 seconds