• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Controle aeroelástico por lógica difusa de uma asa flexível não-linear com atuadores piezelétricos incorporados / Aeroelastic control by fuzzy logic of a nonlinear flexible wing with embedded piezoelectric actuators

Gruppioni, Édson Mulero 29 July 2008 (has links)
As estruturas aeronáuticas estão sujeitas a uma variedade de fenômenos aeroelásticos que podem comprometer o desempenho das aeronaves. Com o desenvolvimento de novos materiais, essas estruturas têm se tornado mais leves e flexíveis, e portanto mais sujeitas a problemas aeroelásticos, tais como flutter e buffeting. Pesquisadores têm trabalhado em soluções alternativas para resolver esses problemas aeroelásticos indesejáveis. Uma dessas soluções envolve o conceito de estruturas inteligentes, que são aquelas que apresentam atuadores e sensores incorporados, integrado com sistema de controle e processamento de sinal, possibilitando a adaptação do sistema estrutural a mudanças nas condições operacionais. Modelos matemáticos que incorporam elementos atuadores e sensores são de grande importância nas fases preliminares de análise de estruturas aeronáuticas inteligentes. Neste contexto, métodos de modelagem são necessários para capturar a ação da dinâmica estrutural e de carga aerodinâmica. O presente trabalho apresenta o estudo de um controlador difuso ativo para resposta aeroelástica de uma asa inteligente com atuadores piezelétricos incorporados. Características não-lineares da resposta aeroelástica são analisadas para condições críticas de flutter. É utilizado o método de elementos finitos para o modelo estrutural não-linear e o método de malha de vórtices para o modelo aerodinâmico não-estacionário. / Aeronautical structures are submitted to a variety of aeroelastic phenomena that may compromise its performance. With this development of new materials, aeronautical structures have become lighter, more flexible, and more subjected to aeroelastic problems, such as flutter and buffeting. Researchers have been working on alternatives to solve these undesired aeroelastic problems, as the recent concept of smart or intelligent structures. Smart structures are those that present embedded sensors and actuators, integrated with control systems and signal processing, to enable the adaptation of the structural system to changes in the operational conditions. Mathematical models that incorporate actuator elements or sensors are of great importance in preliminary phases of analysis of smart aeronautical structures. In this context, modeling methods are necessary to capture dynamic-structural behavior and unsteady aerodynamic loading. The present work is the study of an active fuzzy controller for aeroelastic response of a smart wing with embedded piezoelectric actuators. Nonlinear characteristics of aeroelastic responses are analyzed for critical flutter conditions. The finite elements method for the nonlinear structural model and vortex-lattice method for the unsteady aerodynamic model has been used.
2

SMArt MORPHING WING: um protótipo de asa adaptativa acionada por micromolas de liga com memória de forma.

EMILIAVACA, Angelo. 27 April 2018 (has links)
Submitted by Kilvya Braga (kilvyabraga@hotmail.com) on 2018-04-27T13:03:39Z No. of bitstreams: 1 ANGELO EMILIAVACA - DISSERTAÇÃO (PPGEM) 2016.pdf: 5881090 bytes, checksum: 6d09fd532b88ebec2b8684dfb0e6455f (MD5) / Made available in DSpace on 2018-04-27T13:03:39Z (GMT). No. of bitstreams: 1 ANGELO EMILIAVACA - DISSERTAÇÃO (PPGEM) 2016.pdf: 5881090 bytes, checksum: 6d09fd532b88ebec2b8684dfb0e6455f (MD5) Previous issue date: 2016-02-04 / CNPq / O desenvolvimento da indústria aeronáutica tem provocado alterações significativas nos conceitos atualmente aplicados em aeronaves, sejam elas para fins civis ou militares. Estas mudanças são, em parte, consequência da conscientização ambiental que tem pressionado as indústrias a produzirem aeronaves mais eficientes e menos poluidoras para continuarem competitivas. O impacto destas mudanças sobre o projeto e construção de aeronaves é a busca incessante por conceitos que aumentem a eficiência das aeronaves em um maior espectro de voo sem impactar a segurança e confiabilidade destes sistemas. Neste contexto surge o conceito de aeronaves adaptativas, capazes de se adaptar ao fluxo por mudanças aerodinâmicas sem comprometer a segurança do voo. Um dos conceitos usados em aeronaves adaptativas é o de asa adaptativa, com possibilidade de variação da curvatura do perfil aerodinâmico, o qual é adotado neste trabalho. Estas estruturas apresentam algumas limitações que ainda precisam ser desenvolvidas, como o sistema de atuação, sistema de controle e mecânica estrutural associada à mudança de forma. Baseado nestes aspectos, este trabalho descreve o desenvolvimento de um novo conceito de asa adaptativa, acionada por atuadores do tipo micromolas de liga com memória de forma (LMF). O protótipo desenvolvido, denominado de SMArt Morphing Wing, teve sua estrutura mecânica construída em polímero ABS por impressão 3D e um sistema de “pele” de recobrimento feito em chapa fina de acetato. O protótipo foi testado em vazio e sob carregamento aerodinâmico em túnel de vento, para avaliar a influência da pele e a resposta dos atuadores de LMF sob carga. Nos testes em vazio foram avaliadas as deflexões angulares máximas do protótipo com e sem pele, enquanto que nos testes sob carregamento aerodinâmico entre 6 m/s e 14 m/s, foram avaliadas as deflexões máximas e as forças de arrasto e de sustentação. Adicionalmente, usando a ferramenta computacional ANSYS® CFD, foram feitas análises teóricas do comportamento aerodinâmico do protótipo na condição mais crítica de deflexão e velocidade. A comparação entre os resultados numéricos e experimentais obtidos em túnel de vento revelaram uma boa concordância, confirmando a eficiência do protótipo desenvolvido. / The development of the aeronautic industry has caused significant changes in concepts currently applied in aircraft either for civil or military purposes. These changes are partly due to environmental awareness that has pushed the industry to produce more efficient and less polluting aircraft to remain competitive. The result of these changes on design and construction of aircraft is the incessant search for concepts that increase the efficiency of aircraft in a broader flight range without impacting on the safety and reliability of these systems. In this context arises the concept of adaptive aircraft, which are able to adapt to the flow of aerodynamic changes without compromising flight safety. One of the concepts of morphing aircraft is the morphing wing, with the possibility of variation airfoil camber, which is used in this work. These structures have some limitations that need to be developed as the actuation system, control system and structural mechanics associated with the shape change. Based on these aspects, this work describes the development of a new concept of adaptive wing, driven by shape memory alloy (SMA) micro coil springs like actuator. The prototype, called SMArt Morphing Wing, had its mechanical structure built in ABS polymer for 3D printing and a system of "skin" made of thin sheet of acetate. The prototype was tested unloaded and under aerodynamic loading on the wind tunnel, to evaluate the influence of the skin and the response of SMA actuators under load. In the no load tests were evaluated the maximum angular deflection of the prototype with and without skin, whereas in tests under aerodynamic loading between 6m/s and 14m/s, the maximum deflection, drag and lift forces were evaluated. Additionally, using the computational tool ANSYS® CFD, theoretical analyses of the aerodynamic behavior of the prototype in the most critical condition deflection and speed they were made. The comparison between the numerical and experimental results obtained in wind tunnel showed good agreement, confirming the efficiency of the developed prototype.
3

Controle aeroelástico por lógica difusa de uma asa flexível não-linear com atuadores piezelétricos incorporados / Aeroelastic control by fuzzy logic of a nonlinear flexible wing with embedded piezoelectric actuators

Édson Mulero Gruppioni 29 July 2008 (has links)
As estruturas aeronáuticas estão sujeitas a uma variedade de fenômenos aeroelásticos que podem comprometer o desempenho das aeronaves. Com o desenvolvimento de novos materiais, essas estruturas têm se tornado mais leves e flexíveis, e portanto mais sujeitas a problemas aeroelásticos, tais como flutter e buffeting. Pesquisadores têm trabalhado em soluções alternativas para resolver esses problemas aeroelásticos indesejáveis. Uma dessas soluções envolve o conceito de estruturas inteligentes, que são aquelas que apresentam atuadores e sensores incorporados, integrado com sistema de controle e processamento de sinal, possibilitando a adaptação do sistema estrutural a mudanças nas condições operacionais. Modelos matemáticos que incorporam elementos atuadores e sensores são de grande importância nas fases preliminares de análise de estruturas aeronáuticas inteligentes. Neste contexto, métodos de modelagem são necessários para capturar a ação da dinâmica estrutural e de carga aerodinâmica. O presente trabalho apresenta o estudo de um controlador difuso ativo para resposta aeroelástica de uma asa inteligente com atuadores piezelétricos incorporados. Características não-lineares da resposta aeroelástica são analisadas para condições críticas de flutter. É utilizado o método de elementos finitos para o modelo estrutural não-linear e o método de malha de vórtices para o modelo aerodinâmico não-estacionário. / Aeronautical structures are submitted to a variety of aeroelastic phenomena that may compromise its performance. With this development of new materials, aeronautical structures have become lighter, more flexible, and more subjected to aeroelastic problems, such as flutter and buffeting. Researchers have been working on alternatives to solve these undesired aeroelastic problems, as the recent concept of smart or intelligent structures. Smart structures are those that present embedded sensors and actuators, integrated with control systems and signal processing, to enable the adaptation of the structural system to changes in the operational conditions. Mathematical models that incorporate actuator elements or sensors are of great importance in preliminary phases of analysis of smart aeronautical structures. In this context, modeling methods are necessary to capture dynamic-structural behavior and unsteady aerodynamic loading. The present work is the study of an active fuzzy controller for aeroelastic response of a smart wing with embedded piezoelectric actuators. Nonlinear characteristics of aeroelastic responses are analyzed for critical flutter conditions. The finite elements method for the nonlinear structural model and vortex-lattice method for the unsteady aerodynamic model has been used.

Page generated in 0.099 seconds