Spelling suggestions: "subject:"asp"" "subject:"asps""
1 |
The interactome of the microcephaly gene ASPM in human cortical cellsPiumatti, Matteo 18 May 2021 (has links) (PDF)
Mutations in the Abnormal Spindle-like Microcephaly-associated (ASPM) gene are the most common cause of primary microcephaly, a rare condition characterized by a severe reduction of brain size at birth. Several studies allowed to identify ASPM as a centrosome and mitotic spindle protein that regulates cell division and spindle orientation. However, little is known about ASPM molecular mechanisms, especially in human neural cells relevant to the disease. In order to decipher the molecular mechanisms of action of ASPM in human corticogenesis, we used co-immunoprecipitation (coIP) followed by mass spectrometry to identify the interactors of ASPM in human HEK cells and human cortical progenitors differentiated from pluripotent stem cells engineered to tag the endogenous ASPM protein. We thus identified and validated 14 ASPM interactors of which 12 are newly reported, and seven are found specifically in neural cells, including the important spindle pole regulator Nuclear mitotic apparatus (NUMA). We then characterized the expression and localization of the identified proteins in human cortical progenitors differentiated from control and isogenic ASPM mutant cells. This revealed that many of the identified proteins are selectively located at the spindle pole, and that this selective localization is disrupted in mutant cells for several of the interactors, in particular the MAP7 domain-containing protein 1 (MAP7D1) and DnaJ homolog subfamily B member 6 (DNAJB6). Our data uncover some of the complex ASPM interactome relevant and specific to human brain development and microcephaly, and suggest that ASPM acts as a major molecular hub at the centrosome and mitotic spindle to control the patterns of cell division of cortical progenitors. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
|
2 |
The evolution of neuronal progenitor cell division in mammals: The role of the abnormal spindle-like microcephaly associated (Aspm) protein and epithelial cell polarityFish, Jennifer 19 July 2007 (has links) (PDF)
Among mammals, primates are exceptional for their large brain size relative to body size. Relative brain size, or encephalization, is particularly striking among humans and their direct ancestors. Since the human-chimp split 5 to 7 million years ago, brain size has tripled in the human lineage (Wood & Collard 1999). The focus of this doctoral work is to investigate some of the cell biological mechanisms responsible for this increase in relative brain size. In particular, the processes that regulate symmetric cell division (ultimately generating more progenitors), the constraints on progenitor proliferation, and how neural progenitors have overcome these constraints in the process of primate encephalization are the primary questions of interest. Both functionally analyses in the mouse model system and comparative neurobiology of rodents and primates are used here to address these questions. Using the mouse model system, the cell biological role of the Aspm (abnormal spindle-like microcephaly associated) protein in regulating brain size was investigated. Specifically, Aspm function in symmetric, proliferative divisions of neuroepithelial (NE) cells was analyzed. It was found that Aspm expression in the mouse neuroepithelium correlates in time and space with symmetric, proliferating divisions. The Aspm protein localizes to NE cell spindle poles during all phases of mitosis, and is down-regulated in cells that undergo asymmetric (neurogenic) cell divisions. Aspm RNAi alters the division plane in NE cells, increasing the likelihood of premature asymmetric division resulting in an increase in non-NE progeny. At least some of the non-NE progeny generated by Aspm RNAi migrate to the neuronal layer and express neuronal markers. Importantly, whatever the fate of the non-NE progeny, their generation comes at the expense of the expansion of the proliferative pool of NE progenitor cells. These data have contributed to the generation of an hypothesis regarding evolutionary changes in the regulation of spindle orientation in vertebrate and mammalian neural progenitors and their impact on brain size. Specifically, in contrast to invertebrates that regulate the switch from symmetric to asymmetric division through a rotation of the spindle (horizontal versus vertical cleavage), asymmetric NE cell division in vertebrates is accomplished by only a slight deviation in the cleavage plane away from the vertical, apical-basal axis. The requirement for the precise alignment of the spindle along the apical-basal axis in symmetric cell divisions may have contributed to selection on spindle “precision” proteins, thus increasing the number of symmetric NE cell division, and contributing to brain size increases during mammalian evolution. Previous comparative neurobiological analyses have revealed an increase in basally dividing NE cells in the brain regions of highest proliferation and in species with the largest brains (Smart 1972a,b; Martinez-Cerdeno et al. 2006). The cell biological characteristics of these basally dividing cells are still largely unknown. We found that primate basal progenitors, similar to rodent apical progenitors, are Pax6+. This suggests that primate basal progenitors may share other properties with rodent apical progenitors, such as maintenance of apical contact. Our previous finding that artificial alteration of cleavage plane in NE cells affects their ability to continue proliferating supports the hypothesis that the apical membrane and junctional complexes are cell fate determinants (Huttner & Kosodo 2005). As such, the need to maintain apical membrane contact appears to be a constraint on proliferation (Smart 1972a,b; Smart et al. 2002). Together, these data favor the hypothesis that primate basally dividing cells maintain apical contact and are epithelial in nature.
|
3 |
Etude par ARN interférence de l’expression du gène ASPM dans les cellules souches tumorales des gliomes de haut grade / Study by interference RNA of aspm gene expression in tumor stem cells of high grade gliomaNgwabyt - Bikeye, Sandra-Nadia 29 June 2011 (has links)
Les gliomes sont les tumeurs cérébrales primitives les plus fréquentes de l’adulte. Le glioblastome (grade IV) en est la forme la plus agressive, caractérisé par sa résistance aux traitements actuels (chirurgie, chimiothérapie et radiothérapie). La mortalité de cette pathologie est quasi constante (survie médiane de 15 mois), ce qui justifie l’importance de découvrir de nouvelles cibles thérapeutiques. Le challenge est d'arriver à identifier des marqueurs spécifiques pour proposer un schéma thérapeutique alignant des stratégies de thérapies ciblées qui vont améliorer la prise en charge clinique, la survie globale et la survie sans progression des patients atteints de ces pathologies. Deux axes sont au centre des recherches fondamentales, translationnelles et cliniques. Le premier axe se définit autour du développement de molécules inhibitrices des voies de signalisation et le second autour du concept de cellules souches tumorales (CST) de glioblastomes (GBM) découvertes récemment dans le cerveau et qui révolutionnent la conception de la transformation tumorale.ASPM (Abnormal Spindle Like Microcéphaly Associated) est une cible candidate pertinente susceptible de participer au développement des gliomes (Horvath et al., 2007 ; Hagmann et al., 2008). Cette protéine régule la prolifération des neuroblastes, elle est fortement exprimée au stade embryonnaire, mais, reste faiblement exprimée dans le cerveau adulte. Par ailleurs, ASPM est impliquée dans divers processus de cancérisation (surexprimée dans les cancers du sein, du foie et du cerveau…), toute fois, le mécanisme responsable de cette dérégulation n’est pas encore bien caractérisé.Nos études menées sur une série de 169 gliomes humains, sélectionnés à partir de notre cohorte de patients, montrent que le gène ASPM est un marqueur de la progression vers la malignité, les grades les plus élevés exprimant le plus fortement ASPM. En outre, nous avons également montré que le niveau des transcrits d’ASPM est augmenté dans les récidives de gliomes et qu’en in vitro, ASPM contrôle la formation des gliomasphères (CST de GBM) avec une augmentation de l’expression de ses transcrits dans les cultures in vitro au fil des passages. En continuité de ces observations, nous avons alors développé un sh-miR-RNA spécifique d’ASPM permettant l’extinction post-transcriptionnelle de ce gène. Les résultats obtenus in vitro montrent que la perte d’expression d’ASPM conduit à un arrêt de la prolifération et aboutit à une mort cellulaire massive.Actuellement, des modèles de greffe de gliomasphères chez la souris (orthotopique) sont en cours de développement pour confirmer les effets observés in vitro et vérifier in vivo la validité de notre approche thérapeutique. En perspective, nous tenterons d’étudier les effets du silencing d’ASPM sur la voie de signalisation la plus dérégulée (pRB / E2F ou PI3K / AKT). Enfin, nous étudierons le rôle potentiel de cette protéine dans le contrôle du cycle cellulaire, et, in fine la mise en évidence de ses partenaires… / Glioblastoma (GBM) is the most frequent and aggressive form of primary brain tumors in adults; it is characterized by its resistance to current treatments (surgery, chemotherapy and radiotherapy). The prognosis is grim with a median survival of only 15 months underlining the importance to develop new therapeutic strategies. The recent development of the “tumor stem cell” (TSC) concept in hemopathies has been secondarily applied to gliomas with the identification of subpopulations of GBM cells which express neural stem cell markers and fulfill the criteria for stemness. Some evidences also suggest that this subpopulation could play a primary role in resistance to radio- and chemotherapy.ASPM (Abnormal Spindle Like Microcephaly Associated) is a protein regulating the proliferation of neuroblasts, highly expressed in the embryonic stage but weakly expressed in the adult brain. Preliminary reports suggesting that it could be involved in the development of gliomas (Horvath et al., 2007, Hagemann et al., 2008) prompted us to analyze further the role of this protein, focusing on its potential as a relevant candidate therapeutic target. In a series of 175 gliomas samples of various grades, we found that ASPM mRNA expression was strongly correlated with increasing tumor grade. We also found that ASPM expression increased at recurrence when compared to the initial lesion. Subsequently, we could demonstrate in vitro and in vivo that ASPM expression also increased over serial passages in gliomaspheres and in a mouse glioma xenograft model. In a therapeutic perspective, the effect of lentivirus-mediated shRNA post-transcriptional silencing of ASPM was evaluated in two different gliomasphere models and a dramatic proliferation arrest and cell death was observed. Taken together, these data suggest that ASPM is involved in the malignant progression of gliomas, possibly through expansion of a cancer stem cell compartment, and could be an attractive therapeutic target in glioblastoma multiforme.Another potential candidate tumor stem cell target in glioma is the sonic hedgehog pathway (hedgehog-Gli) which is required for GBM growth and stem cell expansion. In a collaborative study, it was found that NANOG, a transcription factor critically involved with self-renewal of undifferentiated embryonic stem cells, modulates gliomasphere clonogenicity, CD133+ stem cell behavior and proliferation. NANOG was regulated by hedgehog-Gli signalling and was essential for GBM tumourigenicity in orthotopic xenografts suggesting that it could also be a useful potential therapeutic target.Conclusions: Accumulating evidences suggest that tumor stem cells play an important role in the oncogenesis of gliomas and in their resistance to treatment. Our data support this concept and suggest that specific stemness markers may become useful targets to improve treatment of this devastating disease.
|
4 |
The evolution of neuronal progenitor cell division in mammals: The role of the abnormal spindle-like microcephaly associated (Aspm) protein and epithelial cell polarityFish, Jennifer 09 July 2007 (has links)
Among mammals, primates are exceptional for their large brain size relative to body size. Relative brain size, or encephalization, is particularly striking among humans and their direct ancestors. Since the human-chimp split 5 to 7 million years ago, brain size has tripled in the human lineage (Wood & Collard 1999). The focus of this doctoral work is to investigate some of the cell biological mechanisms responsible for this increase in relative brain size. In particular, the processes that regulate symmetric cell division (ultimately generating more progenitors), the constraints on progenitor proliferation, and how neural progenitors have overcome these constraints in the process of primate encephalization are the primary questions of interest. Both functionally analyses in the mouse model system and comparative neurobiology of rodents and primates are used here to address these questions. Using the mouse model system, the cell biological role of the Aspm (abnormal spindle-like microcephaly associated) protein in regulating brain size was investigated. Specifically, Aspm function in symmetric, proliferative divisions of neuroepithelial (NE) cells was analyzed. It was found that Aspm expression in the mouse neuroepithelium correlates in time and space with symmetric, proliferating divisions. The Aspm protein localizes to NE cell spindle poles during all phases of mitosis, and is down-regulated in cells that undergo asymmetric (neurogenic) cell divisions. Aspm RNAi alters the division plane in NE cells, increasing the likelihood of premature asymmetric division resulting in an increase in non-NE progeny. At least some of the non-NE progeny generated by Aspm RNAi migrate to the neuronal layer and express neuronal markers. Importantly, whatever the fate of the non-NE progeny, their generation comes at the expense of the expansion of the proliferative pool of NE progenitor cells. These data have contributed to the generation of an hypothesis regarding evolutionary changes in the regulation of spindle orientation in vertebrate and mammalian neural progenitors and their impact on brain size. Specifically, in contrast to invertebrates that regulate the switch from symmetric to asymmetric division through a rotation of the spindle (horizontal versus vertical cleavage), asymmetric NE cell division in vertebrates is accomplished by only a slight deviation in the cleavage plane away from the vertical, apical-basal axis. The requirement for the precise alignment of the spindle along the apical-basal axis in symmetric cell divisions may have contributed to selection on spindle “precision” proteins, thus increasing the number of symmetric NE cell division, and contributing to brain size increases during mammalian evolution. Previous comparative neurobiological analyses have revealed an increase in basally dividing NE cells in the brain regions of highest proliferation and in species with the largest brains (Smart 1972a,b; Martinez-Cerdeno et al. 2006). The cell biological characteristics of these basally dividing cells are still largely unknown. We found that primate basal progenitors, similar to rodent apical progenitors, are Pax6+. This suggests that primate basal progenitors may share other properties with rodent apical progenitors, such as maintenance of apical contact. Our previous finding that artificial alteration of cleavage plane in NE cells affects their ability to continue proliferating supports the hypothesis that the apical membrane and junctional complexes are cell fate determinants (Huttner & Kosodo 2005). As such, the need to maintain apical membrane contact appears to be a constraint on proliferation (Smart 1972a,b; Smart et al. 2002). Together, these data favor the hypothesis that primate basally dividing cells maintain apical contact and are epithelial in nature.
|
5 |
Etude par arn interférence de l'expression du gène aspm dans les cellules souches tumorales des gliomes de haut gradeNgwabyt-Bikeye, Sandra Nadia 29 June 2011 (has links) (PDF)
Les gliomes sont les tumeurs cérébrales primitives les plus fréquentes de l'adulte. Le glioblastome (grade IV) en est la forme la plus agressive, caractérisé par sa résistance aux traitements actuels (chirurgie, chimiothérapie et radiothérapie). La mortalité de cette pathologie est quasi constante (survie médiane de 15 mois), ce qui justifie l'importance de découvrir de nouvelles cibles thérapeutiques. Le challenge est d'arriver à identifier des marqueurs spécifiques pour proposer un schéma thérapeutique alignant des stratégies de thérapies ciblées qui vont améliorer la prise en charge clinique, la survie globale et la survie sans progression des patients atteints de ces pathologies. Deux axes sont au centre des recherches fondamentales, translationnelles et cliniques. Le premier axe se définit autour du développement de molécules inhibitrices des voies de signalisation et le second autour du concept de cellules souches tumorales (CST) de glioblastomes (GBM) découvertes récemment dans le cerveau et qui révolutionnent la conception de la transformation tumorale.ASPM (Abnormal Spindle Like Microcéphaly Associated) est une cible candidate pertinente susceptible de participer au développement des gliomes (Horvath et al., 2007 ; Hagmann et al., 2008). Cette protéine régule la prolifération des neuroblastes, elle est fortement exprimée au stade embryonnaire, mais, reste faiblement exprimée dans le cerveau adulte. Par ailleurs, ASPM est impliquée dans divers processus de cancérisation (surexprimée dans les cancers du sein, du foie et du cerveau...), toute fois, le mécanisme responsable de cette dérégulation n'est pas encore bien caractérisé.Nos études menées sur une série de 169 gliomes humains, sélectionnés à partir de notre cohorte de patients, montrent que le gène ASPM est un marqueur de la progression vers la malignité, les grades les plus élevés exprimant le plus fortement ASPM. En outre, nous avons également montré que le niveau des transcrits d'ASPM est augmenté dans les récidives de gliomes et qu'en in vitro, ASPM contrôle la formation des gliomasphères (CST de GBM) avec une augmentation de l'expression de ses transcrits dans les cultures in vitro au fil des passages. En continuité de ces observations, nous avons alors développé un sh-miR-RNA spécifique d'ASPM permettant l'extinction post-transcriptionnelle de ce gène. Les résultats obtenus in vitro montrent que la perte d'expression d'ASPM conduit à un arrêt de la prolifération et aboutit à une mort cellulaire massive.Actuellement, des modèles de greffe de gliomasphères chez la souris (orthotopique) sont en cours de développement pour confirmer les effets observés in vitro et vérifier in vivo la validité de notre approche thérapeutique. En perspective, nous tenterons d'étudier les effets du silencing d'ASPM sur la voie de signalisation la plus dérégulée (pRB / E2F ou PI3K / AKT). Enfin, nous étudierons le rôle potentiel de cette protéine dans le contrôle du cycle cellulaire, et, in fine la mise en évidence de ses partenaires...
|
6 |
L'imagerie systématique de transcrits et de polysomes uniques révèle un mécanisme de transport dépendant de la protéine naissante / Systematic imaging of single transcripts and polysomes reveals a widespread transport mechanism dependent on nascent translationSafieddine, Adham 12 November 2019 (has links)
La traduction locale permet un contrôle spatial de l'expression des gènes. Dans ce travail, j'ai participé à deux cribles de localisation d'ARNm concernant plus de 1000 transcrits. Le premier était un crible double ARNm/protéine qui utilisait une approche de BAComics pour co-détecter les ARNm et la protéine pour laquelle ils codent. Le second a été réalisé à l'aide d'une nouvelle approche smFISH à haut-débit et a analysé tous les ARNm codant pour des protéines centrosomales et des régulateurs mitotiques. Le premier crible a révélé des cas de traduction locale dans divers compartiments subcellulaires, et notamment au niveau des protrusions cytoplasmiques, des centrosomes, de l’appareil de Golgi, des endosomes et des pores nucléaires, ce qui n'avait jamais été décrit auparavant. De manière remarquable, la traduction du peptide naissant était nécessaire pour le transport de nombreux transcrits localisés. De plus, j'ai montré que plusieurs ARNm (tels que ASPM et DYNC1H1) sont traduits dans des structures dédiées appelées usines de traduction.Le deuxième crible a révélé 8 transcrits localisés et traduits au niveau des centrosomes. J'ai montré que la localisation de ces 8 transcrits est régulée par le cycle cellulaire et qu'elle nécessite également la traduction du polypeptide naissant. En utilisant le gène ASPM comme modèle, j'ai visualisé des ARNm et des polysomes uniques avec les systèmes MS2 et SunTag, respectivement. Cela a révélé un transport dirigé des polysomes ASPM vers les centrosomes au début de la mitose, lorsque cet ARNm commence à être localisé. Ces données fournissent des preuves fortes d'un mécanisme de ciblage co-traductionnel dépendant de moteurs moléculaires ainsi que de la protéine naissante. Cela va à l'encontre du dogme actuel selon lequel le transport d'ARNm est un processus basé sur l'ARN et agissant sur des molécules réprimées pour la traduction. En revanche, cela suggère que des mécanismes tels que celui utilisé par le SRP sont plus répandus qu'on ne le pensait auparavant. / Local translation allows a spatial control of gene expression. Here, I participated in two mRNA localization screens imaging more than 1000 transcripts in total: (i) the first was a dual mRNA/protein screen that used a BAComics approach to co-detect mRNAs and the protein they encode; (ii) the second was done using a new high-throughput smFISH approach to screen all genes that encode centrosomal proteins and mitotic regulators. The first screen revealed cases of local translation at various subcellular compartments including cytoplasmic protrusions, centrosomes, Golgi, endosomes and the nuclear pore, which was never described before. Remarkably, translation of the nascent peptide was required for the transport of many localized transcripts. In addition, I showed that several mRNAs (such as ASPM and DYNC1H1) are translated in dedicated structures called translation factories.The second screen revealed 8 transcripts that are localized and translated at the centrosome. I showed that the localization of these 8 transcripts is regulated by the cell cycle, and that it also requires translation of the nascent polypeptide. Using the endogenous ASPM gene as a model, I imaged single mRNAs and polysomes with the MS2 and SunTag systems, respectively. This revealed a directed transport of ASPM polysomes towards centrosomes at the onset of mitosis, when this mRNA starts localizing. These data provide definitive evidence for a co-translational targeting mechanism dependent on motors as well as the nascent protein. This argues against the current dogma that mRNA transport is an RNA-based process acting on translationally repressed molecules. Instead, it suggests that SRP-like mechanisms are more widespread than previously thought.
|
7 |
Perfil de expressão dos genes MYC, MYCN, TERT, ASPM e PRAME em Meduloblastoma / Expression profile of genes MYC, MYCN, TERT, ASPM and PRAM in MedulloblastomaVulcani-Freitas, Tânia Maria [UNIFESP] 28 April 2010 (has links) (PDF)
Made available in DSpace on 2015-07-22T20:50:35Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-04-28 / Meduloblastoma (MB) é o tumor maligno de sistema nervoso central (SNC) mais comum em criança, compreendendo 20% dos tumores primários de SNC e 40% dos tumores cerebelares da infância. Devido sua forte tendência metastática, o tratamento padrão pós-operatório inclui radio e quimioterapia, cujo impacto causa distúrbios endócrinos e de crescimento, e disfunção neurocognitiva a longo prazo. Frente a esses efeitos negativos, muitas pesquisas em meduloblastoma têm sido realizadas com intuito de obter conhecimento biológico desses tumores para tentar identificar fatores prognósticos moleculares que possam orientar os tratamentos, tornando-os mais específicos e menos agressivos. Alguns estudos em MB têm sugerido que a expressão do oncogene MYC está associada com diminuição da sobrevida e sua superexpressão com maior agressividade do tumor. Por isso, MYC pode ser um indicador importante de prognóstico, além de modulador do comportamento desta doença. Enquanto o gene MYC é expresso em uma variedade de tecidos, a expressão de MYCN, outro membro da família MYC, é restrita a estágios precoces do desenvolvimento embrionário de alguns tecidos apenas, entre eles, o sistema nervoso central e periférico, sendo um mediador importante dos efeitos de ativação na proliferação de células precursoras cerebelares. Dessa forma, quando a expressão de MYCN está desregulada, ela aumenta a tumorigenicidade dessas células podendo dar origem ao MB. Além disso, o gene MYC também é considerado importante regulador da transcrição TERT, gene que codifica uma subunidade catálica de da telomerase, enzima importante para carcinogênese e imortalização de células neoplásicas. A atividade anormal da telomerase está presente em 90% dos cânceres e o aumento de sua atividade está associado a eventos clínicos desfavoráveis. Outro gene importante é o ASPM (abnormal spindle-like microcephaly associated) que desempenha função fundamental na neurogênese e proliferação celular durante o desenvolvimento cerebral. Esse gene codifica uma proteína de centrossomo e fuso mitótico que permite a divisão celular simétrica em células neuroepiteliais durante o desenvolvimento e aumento do tamanho cerebral. Alterações em ASPM é a causa mais comum de microcefalia primária em humanos e de falha de segregação, induzindo a aneuploidias e instabilidade genética. Além desses genes, outro gene estudado recentemente, como alvo em xv imunoterapia, é o gene PRAME que codifica um antígeno tumoral que está presente em vários tumores, incluindo meduloblastoma. O gene PRAME possui baixa ou ausência de expressão em tecidos normais, por isso é pode ser um forte candidato como alvo em imunoterapia, que é um tratamento menos tóxico. OBJETIVOS: O objetivo desse estudo foi investigar a expressão dos genes MYC, MYCN, TERT, ASPM e PRAME em fragmentos tumorais de meduloblastoma de crianças e tentar correlacionar com os parâmetros clínicos e verificar se há correlação de MYC, MYCN, TERT entre si, uma vez que estão correlacionados. MÉTODOS: Análise de expressão gênica foi realizada através de PCR quantitativa em tempo real, utilizando sistema SYBR Green, em 37 amostras tumorais de crianças, com média de idade de 8 anos. Para comparação de perfil de expressão foi usada duas amostra de cérebro normal. A análise estatística foi realizada nos programas Graph Pad Prism 4 e VassarStats RESULTADOS: Todas nossas amostras superexpressaram o gene MYCN com valor de quantificação relativa (RQ) mediana igual a 31 com p=0.001; assim como, todas nossas amostras também superexpressaram o gene ASPM com mediana igual a 586, p<0.0001. Do total de amostras, 95%, 81% e 84% superexpressaram TERT, MYC e PRAME respectivamente, sendo os valores de RQ (mediana) iguais a 322, p=0.01; 9.2, p<0.0001; 33, p<0.0001. Apesar da elevada expressão dos genes estudados na maioria das amostras estudadas, houve apenas correlação estatística entre a superexpressão de MYCN (p=0.008) e os pacientes que foram a óbito, e de TERT e os pacientes que recidivaram (p=0.0431). Não encontramos outra correlação estatística entre a superexpressão dos genes e as características clínicas dos pacientes. CONCLUSÃO: Os genes MYC, MYCN e TERT estavam superexpressos nas amostras de meduloblastoma analisadas em uma freqüência muito superior ao demonstrado na literatura, o que sugere que esses três genes podem ajudar na identificação de tumores agressivos, uma vez que o pognóstico desses pacientes continua baseado apenas em parâmentros clínicos. A superexpressão de ASPM em todas as amostras estudadas sugere que este gene pode estar envolvido na origem de MB, como parte da neurogênse anormal durante o desenvolvimento embrionário, porém estudoas funcionais devem ser realizados para confirmar essa hipótese. Por fim, o gene PRAME pode ser candidato à marcador de célula tumoral em MB, podendo no futuro ser candidato como alvo em imunoterapias. / To investigate the expression of genes MYC, MYCN and TERT in tumor fragments of pediatric medulloblastoma and correlate gene expression profiles with clinical parameters. Analysis of gene expression was performed by quantitative PCR real time in 37 tumor samples and correlated with clinical and pathological data. All 37 samples overexpressed MYCN gene (p= 0.001), 95% and 84% of the samples overexpressed TERT and MYC, respectively (p<0.0001). Twenty nine (78%) of all samples had concomitant high expression of MYC, MYCN and TERT genes together. Seventeen (59%) were high-risk classification, 10 (34%) were metastatic (M+) stage, two (7%) were anaplastic or largecell/ anaplastic subtype, eight (28%) of patients relapsed, beyond thirteen (45%) suffered partial surgical resection. and fourteen (48%) died. We found correlation between MYC, MYCN and TERT expression (p<0.0001). The identification of a subgroup with concomitant overexpression of the three investigated genes suggests the possibility of using more than one aspect of molecular indicative of unfavorable prognosis that characterizes the group with poor outcome. However, in future this may be enhanced by targeted therapy for the product TERT as proposed in some neoplasms. The identification of molecular events in the medulloblastoma categorization aims to help at-risk groups moving towards individualized medicine. / TEDE / BV UNIFESP: Teses e dissertações
|
8 |
Functional Analysis Of Primary Microcephaly Gene Product ASPMSinghmar, Pooja 06 1900 (has links)
Autosomal recessive primary microcephaly (MCPH) is defined by congenital microcephaly and associated mental retardation with head circumference of the affected individual at least 3 standard deviations below age- and sex-means. It is a disorder of abnormal fetal brain growth which is a consequence of impaired neurogenesis. It is genetically heterogeneous with seven known loci and genes for all the seven loci have been identified: MCPH-1-MCPH1, MCPH2-WDR62, MCPH3-CDK5RAP2, MCPH4-CEP152, MCPH5-ASPM, MCPH6-CENPJ, and MCPH7-STIL. All the seven MCPH proteins localize at the centrosome. Apart from MCPH, many other proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. For example, Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. The study of MCPH genes can also provide insights into the basics of neurogenesis that lead to a normal brain size. The most common cause of MCPH is mutations in the ASPM (abnormal spindle-like, microcephaly-associated protein) gene. The main aim of this study was to gain insight into the function of ASPM using the yeast two-hybrid technique.
The main findings of the study are listed below.
To find novel interacting proteins for SPM, a GAL4 based yeast two-hybrid system was used. The 3,477 amino acid long ASPM was divided into eight different baits and each bait was individually used for screening a human fetal brain cDNA library cloned in the pACT2 vector. To generate baits, the different regions were amplified from human fetal brain cDNA and cloned in-frame with the GAL4-DNA binding domain in the pGBKT7 vector.
Screening with a C-terminus ASPM bait (pGBKT7-CTR) identified Angelman syndrome protein ubiquitin protein ligase E3A (UBE3A) as an ASPM interactor. A region of UBE3A from amino acids 639-875 was found to interact with ASPM. The identification of UBE3A as an ASPM interacting partner was interesting as more than 80% of Angleman syndrome patients are reported to have microcephaly.
Screening with the baits pGBKT7-1.4 kb ASPM and pGBKT7-2.1 kb ASPM harboring parts of IQ domain identified calmodulin as an ASPM interating partner. The full length calmodulin was found to interact with the IQ domain of ASPM.
The interactions identified in the yeast two-hybrid assay were confirmed in vivo by co-immunoprecipitation studies. For this, a rabbit polyclonal anti-ASPM antibody was raised against the N-terminal region of ASPM (from amino acids 544-1059). The specificity of the antibody was tested by Western blot analysis and immunofluorescence microscopy. ASPM antibody recognized the 410 KDa fulllength ASPM protein in lysates from human fetal tissues and different cell lines. Immunofluorescence analysis in HEK293 cells with the antibody revealed centrosomal staining of ASPM throughout mitosis and midbody staining in cytokinesis, as reported previously. Using antibodies against ASPM and UBE3A and human fetal kidney lysate, ASPM and UBE3A interaction was confirmed in vivo by co-immunoprecipitation. The interaction between ASPM and calmodulin was confirmed similarly.
The relevance of the interaction between ASPM and UBE3A was pursued further Like ASPM, UBE3A localized to the centrosome throughout mitotic progression. ASPM levels were found to be unaffected upon overexpression of UBE3A in HEK293 cells, indicating that ASPM is not degraded by a UBE3A-dependent proteasomal pathway or the degradation may be spatial-temporal control. Further, immunofluorescence analysis of UBE3A overexpressing HEK293 cells revealed that UBE3A does not affect either the ASPM localization or its protein level at the centrosome.
Synchronization of HEK293 cells in different cell cycle phases revealed that UBE3A
is a cell cycle dependent protein and its level peaks in mitosis
To explore the functional role of UBE3A’s increased level in mitosis, UBE3A was depleted in HEK293 cells with a shRNA construct and stable clones were generated. HEK293- UBE3A shRNA knockdown cells were examined for normal mitotic progession and spindle defects. There was a 3.81- to 5.52-fold increase in the frequency of anaphase/telophase cells with missegregated chromosomes in UBE3A knockdown clones as compared to scrambled clones. Hence, we identified a definitive role of UBE3A in chromosome segregation.
Defective chromosome segregation has been reported in many studies associated with microcephaly-related proteins. Interestingly, chromosome malfunctioning has
also been reported in Drosophilia asp mutants (ASPM orthologue) and Celegans aspm-1 knockdown cells. Therefore, the loss of both ASPM and UBE3A leading to chromosome segregation defects reveals the existence of a molecular pathway common to both ASPM and UBE3A
As a consequence of chromosome missegregation, UBE3A knockdown cells were found to undergo abnormal cytokinesis and apoptosis. The percentage of apoptotic cells in UBE3A knockdown clones was 1.25- to 3.04-fold higher as compared to scrambled clones. Interestingly, an extensive apoptosis has been found in the neural folds of MCPH7 gene STIL null mice embryos.
Thus, the present study links Angleman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time.
|
Page generated in 0.0514 seconds