1 |
Finite element analysis of short-term and long-term building response to tunnellingYiu, Wing Nam January 2018 (has links)
Tunnelling in urban areas causes short-term and long-term ground movements under existing buildings. Finite element analysis provides a useful option for assessing the likely extent of damage induced in these buildings. Although finite element analysis is suggested to be used in the later phases of the building damage assessment procedures employed in practice, only the effect of short-term ground movements is typically considered and there are no detailed guidelines on the specification and complexity of the modelling. This thesis addresses the tunnel-soil-building interaction problem and the effect of long-term consolidation, as well as demonstrating the application of 3D finite element analysis with appropriate simplifications for practical assessment purposes. Finite element models are developed to quantify the effect of shallow tunnelling on an example masonry building founded on strip footings, considering both single- and twin-tunnel scenarios in a typical London soil profile. Total stress and effective stress analyses are adopted with specific modelling procedures to focus on the short-term and long-term response respectively. The analyses use a non-linear model for the masonry, and allow slippage and gapping at the soil-footing interface. Two advanced constitutive models for the soil (the extended Mohr-Coulomb model and the modified two-surface kinematic hardening model) are implemented with customized stress update schemes. The finite element results present the interaction between the soil and the building by comparing with the greenfield ground response. The horizontal coupling between the foundation and the ground is shown to be relatively weak. The dominant deformation mode of the building varies with the tunnel configuration (i.e. single or twin tunnels) and the tunnel eccentricity. Strain localization is found around the explicitly modelled window and door openings. The long-term consolidation is sensitive to the permeability of the tunnel lining. The building response to long-term ground movements is further affected by the tunnel-tunnel interaction in the case of twin-tunnel configuration. Performing 3D analysis of a single facade and foundation provides useful damage predictions, without the need to model a complete building. The proposed result processing methods such as characteristic strain and damage bar chart are practical tools for assessment. The study highlights some limitations of the elastic beam assessment method, which is often adopted in the early phase of the damage assessment process.
|
2 |
Probabilistic Assessment Of Liquefaction-induced Lateral Ground DeformationsAl Bawwab, Wa', el Mohammad Kh. 01 November 2005 (has links) (PDF)
A new reliability-based probabilistic model is developed for the estimation of liquefaction-induced lateral ground spreading, taking into consideration the uncertainties within the model functional form and the descriptive variables as well. The new model is also introduced as performance-based probabilistic engineering tool.
|
3 |
Enriching flood risk analyses with distributions of soil mechanical parameters through the statistical analysis of classification experimentsSchwiersch, Niklas, Heyer, Torsten, Stamm, Jürgen 04 June 2024 (has links)
The distributions of soil mechanical parameters required for a comprehensive flood risk assessment are often taken from the scarce literature available. This article therefore presents a method to indirectly obtain the distributions from the results of often conducted classification tests. Empirical correlation terms are used for the transformation of the classification data into stability-relevant parameters, in particular the void ratio, the soil unit weight, the friction angle and the saturated permeability. The method is applied exemplarily to a data set collected throughout Germany in the immediate vicinity of water bodies and plausible distributions are obtained for 2/3 of the 13 soil classes considered. For the validation of the results, the extension of (inter)national databases by samples of the considered soil mechanical parameters is recommended due to the current poor validation basis.
|
Page generated in 0.0733 seconds