• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 1
  • Tagged with
  • 18
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Détection et modélisation de binaires sismiques avec Kepler / Detection and modelling of seismic binaries with Kepler

Marcadon, Frédéric 20 March 2018 (has links)
Le satellite spatial Kepler a détecté des oscillations de type solaire parmi plusieurs centaines d'étoiles, permettant la détermination de leurs propriétés physiques à l'aide de l’astérosismologie. Les modèles d'évolution stellaire et les lois d'échelle employés pour déterminer les paramètres tels que la masse, le rayon et l'âge nécessitent toutefois une calibration adaptée. Dans ce contexte, l'utilisation des systèmes binaires présentant des oscillations de type solaires pour les deux étoiles semble particulièrement appropriée. Au cours de cette thèse, nous avons procédé à un travail de détection de ces binaires sismiques parmi les données de Kepler ainsi qu'au développement des outils nécessaires à leur analyse. Bien que la découverte d'une nouvelle binaire sismique semblait très peu probable, nous avons pu rapporter pour la toute première fois la détection d'oscillations de type solaire associées aux deux étoiles les plus brillantes d'un système triple, à savoir HD 188753. À partir de la modélisation, nous avons déterminé des âges semblables pour les deux étoiles détectées en astérosismologie, comme attendu en raison de leur origine commune. Par ailleurs, nous avons entrepris la première analyse orbitale de ce système hiérarchique dans le but d'obtenir une estimation directe des masses et de la parallaxe. Finalement, l'exemple de HD 188753 illustre notre capacité à détecter et à modéliser chacune des étoiles d'un système binaire ou multiple tout en réalisant l'analyse orbitale de celui-ci. Les différents outils développés au cours de cette thèse seront intensivement utilisés dans le cadre des futures missions TESS et PLATO. / The Kepler space telescope detected solar-like oscillations in several hundreds of stars, providing a way to determine their physical properties using asteroseismology. However, the stellar evolutionary models and scaling relations employed to determine parameters such as the mass, the radius and the age require a proper calibration. In this context, the use of seismic binaries showing solar-like oscillations in both stars is especially suitable. During this thesis, we have worked towards the detection of such seismic binaries from the Kepler database and developed the necessary tools to study them. Although the discovery of a new seismic binary was very unlikely, we were able to report for the first time the detection of solar-like oscillations in the two brightest stars of a triple stellar system, namely HD 188753. Using stellar modelling, we found compatible ages for the two stars derived from asteroseismology, as expected from their common origin. In addition, we performed the first orbital analysis of this hierarchical system in order to derive a direct estimate of masses and parallax. Finally, the example of HD 188753 shows our capability to detect and model each of the stars of a binary or multiple system and to perform the orbital analysis of this one. The various tools developed during this thesis will be extensively used in the context of the future missions TESS and PLATO.
2

Astérosismologie des étoiles de type solaire. Test de composition chimique et de structure interne. Applications aux étoiles centrales de système planétaire.

Laymand, Marion 04 February 2008 (has links) (PDF)
Des oscillations sont observées dans de nombreuses étoiles de type solaire. L'astérosismologie permet de sonder leur structure interne. Lors de ce travail nous nous sommes intéressés à l'étoile ΙHor. Comme la plupart des étoiles à planète, elle est surmétallique. Elle appartient au courant des Hyades: elle possède la même cinématique galactique que les étoiles de l'amas.<br /> La première partie de cette étude introduit brièvement la théorie des oscillations stellaires et les équations qui y sont liées. Dans une deuxième partie, le comportement des coeurs convectifs dans les étoiles de type solaire est étudié, ainsi que leur influence sur les fréquences d'oscillation. La troisième partie présente l'étude de ΙHor. Dans un premier temps, elle est modélisée à partir des observations spectroscopiques de trois groupes d'observateurs et les fréquences de ces modèles sont calculées. Dans un deuxième temps, les observations avec le spectrographe HARPS sont décrites. Enfin est présentée la recherche du modèle de ΙHor qui ajuste au mieux les observations. Il est montré que cette étoile a été formée avec l'amas des Hyades. Sa surmétallicité provient du nuage primordial à l'origine de l'amas des Hyades et de plusieurs autres. Elle n'est pas la conséquence d'accrétion de planètes dans ses couches externes
3

La modélisation des oscillations d'étoiles en rotation rapide

Reese, Daniel 30 October 2006 (has links) (PDF)
Dans cette thèse, on étudie de manière précise les effets de la rotation rapide sur les oscillations stellaires. Les méthodes précédentes étaient inadéquates par rapport aux exigences de l'astérosismologie, soit parce qu'elles prenaient en compte de manière perturbative la rotation, ce qui les limite à de faibles vitesses de rotation, soit à cause d'une précision numérique insuffisante. Pour répondre à ces difficultés, on développe ici une approche complète basée sur l'utilisation de méthodes spectrales et d'un système de coordonnées qui s'adapte à la forme aplatie de l'étoile. On calcule alors des modes acoustiques et des fréquences propres de modèles polytropiques d'étoiles en rotation uniforme. À partir des résultats obtenus, on établit, pour la première fois, des domaines de validité des méthodes perturbatives. On analyse, par ailleurs, l'organisation asymptotique du spectre de fréquences et la structure géométrique des modes de pulsations à des vitesses de rotation élevées.
4

La modélisation des oscillations d'étoiles en rotation rapide

Reese, Daniel 30 October 2006 (has links) (PDF)
Dans cette thèse, on étudie de manière précise les effets de la rotation rapide sur les oscillations stellaires. Les méthodes précédentes étaient inadéquates par rapport aux exigences de l'astérosismologie, soit parce qu'elles prenaient en compte de manière perturbative la rotation, ce qui les limite à de faibles vitesses de rotation, soit à cause d'une précision numérique insuffisante. Pour répondre à ces difficultés, on développe ici une approche complète basée sur l'utilisation de méthodes spectrales et d'un système de coordonnées qui s'adapte à la forme aplatie de l'étoile. On calcule alors des modes acoustiques et des fréquences propres de modèles polytropiques d'étoiles en rotation uniforme. À partir des résultats obtenus, on établit, pour la première fois, des domaines de validité des méthodes perturbatives. On analyse, par ailleurs, l'organisation asymptotique du spectre de fréquences et la structure géométrique des modes de pulsations à des vitesses de rotation élevées.
5

Du transport de moment cinétique par les ondes internes de gravité à l'heure de la sismologie stellaire / On the angular momentum transport by internal gravity waves at the time of asteroseismology

Pinçon, Charly 28 September 2017 (has links)
Les missions spatiales CoRoT (2006-2014) et Kepler (2009) ont procuré de nombreuses données sismiques pour des milliers d'étoiles de faible masse. L'analyse de ces données a rendu possible l'étude de l'intérieur de ces étoiles au cours de l'évolution et a apporté de fortes contraintes sur les processus physiques à l’œuvre sous leur surface. En particulier, ces observations ont montré que la rotation moyenne du cœur de ces étoiles augmente légèrement avec le temps sur la branche des sous-géantes avant de diminuer lors de l'ascension de la branche des géantes rouges. Ceci est désaccord avec les prédictions théoriques actuelles et souligne la nécessité d'inclure de nouveaux processus de transport de moment cinétique dans les modèles stellaires. Dans une première partie, j'ai donc étudié l'influence du transport de moment cinétique par les ondes internes de gravité sur l'évolution de la rotation dans les étoiles de faible masse. Ces ondes se propagent dans les zones radiatives stablement stratifiées et sont capables d'en modifier la vitesse de rotation moyenne. Or, l'efficacité du transport par les ondes dépend de leur amplitude et donc du mécanisme d'excitation. Alors que des modèles semi-analytiques permettaient déjà d'évaluer l'énergie transférée aux ondes par la pression turbulente dans la zone convective, une estimation théorique de l'excitation par la pénétration de panaches convectifs à l'interface avec la zone radiative restait manquante. J'ai donc proposé un modèle d'excitation pour estimer la part d'énergie cinétique des panaches transférées sous forme d'ondes à la base de la zone convective (Pinçon et al., 2016). Cela m'a d'abord permis d'établir que la pénétration convective génère des ondes plus efficacement que la pression turbulente, et ensuite que les ondes induites par la pénétration convective sont capables de s'opposer à l'accélération de la rotation due à la contraction des couches internes, depuis la séquence principale jusqu'au début de l'ascension de la branche des géantes rouges. En particulier, j'ai montré que les valeurs de la rotation observées dans l'intérieur des étoiles sous-géantes peuvent être interprétées comme le possible résultat d'un mécanisme de régulation contrôlé par ces ondes (Pinçon at al., 2017). Dans une seconde partie, je me suis intéressé à l'amélioration et à l'élaboration des diagnostiques sismiques par les modes mixtes, ces modes d'oscillation qui sont capables de sonder aussi bien l'enveloppe que les régions centrales des étoiles. Les diagnostiques sismiques font le lien entre les caractéristiques observées dans un spectre d'oscillation et les propriétés de la structure interne de l'étoile. Mon attention s'est premièrement focalisée sur la facteur de couplage des modes mixtes qui décrit le degré d'interaction entre les oscillations dans la cavité centrale et celles dans l'enveloppe de l'étoile. Ce paramètre n'a été, jusque là, que très peu étudié. Une première étude observationnelle sur un large échantillon d'étoiles par Mosser et al. (2017) a montré que ce facteur varie au cours de l'évolution et se comporte différemment selon le stade évolutif. J'ai contribué à l'interprétation des résultats en montrant via un modèle simplifié que ce facteur est sensible aux changements structuraux de l'étoile au cours de l'évolution. De plus, cette analyse a notamment démontré la nécessité de considérer l'hypothèse d'un fort couplage. J'ai donc entrepris une validation du formalisme proposé parallèlement à cette dernière étude par Takata (2016) en comparant ses prédictions avec celles obtenues numériquement pour des modèles d'étoiles évoluées. Enfin, en utilisant une modélisation simple, j'ai montré qu'une analyse précise du spectre des modes mixtes paramètre permettrait de plus d'obtenir de l'information sur le contraste de densité entre le coeur et l'enveloppe de l'étoile. / The space-borne missions CoRoT (2006-2014) and Kepler (2009) provided a lot of seismic data for thousands of low-mass stars. Data analysis enabled us to study the interior of these stars during their evolution and brought stringent constraints on the physical processes at work under their surface.These observations notably revealed that the mean core rotation rate of stars weakly increases on the subgiant branch before dropping on the red giant branch while their central layers are contracting.for several subgiant and red giant stars in which mixed modes could be detected. Subsequently, several works demonstrated the inability of the current stellar evolution codes to reproduce these observations and stressed out the need for an additional transport process of angular momentum to counteract the acceleration of the central rotation driven by the core contraction during the post-main sequence evolution.Therefore, in a first part of my PhD thesis, I investigated the effect of the angular momentum transport by internal gravity waves on the rotation evolution of low-mass stars. These waves have buoyancy as restoring force and can propagate into stably stratified radiative zones, where they are able to interact with the medium and modify its mean rotation. The efficiency of the angular momentum transport by waves depends on their amplitude and so on their generation mechanism. While several works had already theoretically studied the wave excitation by turbulent pressure in the convective, an estimate of the wave generation by penetrative convection into the upper layers of the radiatve zone was still missing. I thus developed a semi-analytical excitation model to estimate the part of the plumes kinetic energy transferred into internal gravity waves at the base of the convective zone (Pinçon et al., 2016). I first found that penetrative convection generates waves more efficiently than turbulent pressure, and then that plume-induced waves are able to counteract the spin-up of the core driven by the gravitational contraction from the main-sequence to the beginning of the ascent of the red giant branch. Moreover, I showed that the radial-differential rotation observed in subgiant and early red giant stars can be explained by a regulation mechanism controlled by the influence of the plume-induced internal gravity waves (Pinçon et al., 2017).In a second part, I worked on the elaboration and the improvement of the seismic diagnoses by mixed modes that have the ability to probe both the envelope and the core of stars. Seismic diagnoses aim at making the link between the features observed in oscillation spectra and the physical quantities describing stars and their internal structures. In a first step, I focused on the coupling factor of mixed modes which expresses the level of interaction between the central and the outer resonant cavities and had still remained largely unexploited. The first large-scale analysis of this parameter by Mosser et al. (2017) showed that this factor vary during the evolution, with typical values depending on the evolutionary status.In this work, I contributed to the interpretation of the results via a simplified model in which the value of the coupling factor is directly sensitive to structural readjustments occurring during stellar evolution. This study notably revealed the necessity to consider the hypothesis of a strong coupling. In parallel to this work, a theoretical description of mixed modes under the assumption of strong coupling was proposed by Takata (2016). Therefore, I undertook a validation of this formalism by comparing its predictions with an oscillation code for appropriate evolved models. Finally, using a simplifying modeling, I showed that a precise analysis of the mixed modes spectrum can also bring information on the contrast of density between the core and the envelope.
6

Sismologie des étoiles chaudes magnétiques / Seismology of magnetic massive stars

Buysschaert, Bram 26 April 2018 (has links)
Environ 10% des étoiles de type spectral O, B ou A ont un champ magnétique fort, détectable, stable et à grande échelle à leur surface, qui ressemble le plus souvent à un dipôle. Des modèles théoriques et des simulations numériques prédisent ces champs magnétiques vus en surface pénètrent aussi dans les zones radiatives et influencent la structure interne. Les modèles prédisent que ces champs magnétiques imposent une rotation uniforme dans les zones radiatives et peuvent supprimer la pénétration convective autour du cœur. Cela a des conséquences sur l’évolution de ces étoiles chaudes magnétiques. Pour ce faire, l’astérosismologie est la meilleure méthode car les paramètres des pulsations stellaires sont directement liés aux conditions physiques internes. Plusieurs types de pulsations stellaires sont connus et classés en fonction de leur force de rappel. Parmi eux, les plus à même de sonder les régions proches du cœur des étoiles, sur lequel se concentre notre intérêt dans cette thèse sont les modes de gravité, qui sont gouvernés par la force d’Archimède.Notre premier objectif était d’identifier des étoiles chaudes, pulsantes et magnétiques et de caractériser leurs propriétés magnétiques et sismiques. Des étoiles ont été sélectionnées grâce à des diagnostics observationnels indirects de la présence d’un champ magnétique qou nous confirmons grâce à de la spectropolarimétrie optique à haute résolution obtenue avec ESPaDOnS, Narval et ESPaDOnS. Pour deux étoiles magnétiques connues, HD43317 et o Lup, nous avons caractérisé la géométrie et l’intensité du champ magnétique aves des séries temporelles spectropolarimétriques. Pour toutes les étoiles de notre échantillon, nous avons également obtenu des séries temporelles photométriques très précises grâce aux télescopes spatiaux BRITE, CoRoT ou K2 pour étudier leur variabilité (périodique) cohérente. Seulement HD43317 a révélé des dizaines de fréquences de pulsations stellaires, pointant plutôt vers des modes de gravité.Nous nous sommes ensuite concentrés sur HD43317 dans pour déterminer observationellement la structure interne de cette étoile magnétique chaude. Nous avons fait usage de modélisation sismique: les fréquences des modes de pulsations observées dans les données CoRoT, couvrant 150j, ont été ajustées à celles des modes gravito-inertiels calculés avec le code de pulsations GYRE couplé aux modèles MESA. Nous avons pu associer les fréquences des modes de pulsations à des séries de modes (l,m) = (1,−1) et (2,−1) se chevauchant. La petite zone de pénétration convective dans la zone radiative telle que déduite du modèle MESA optimal s’avère cohérente avec les prédictions théoriques. Néanmoins, les intervalles de confiance sur certains paramètres physiques issus des modèles sont très larges et compatibles avec les valeurs de la littérature pour des étoiles chaudes et pulsantes mais non-magnétiques. Nous en concluons que la série temporelle de 150j de données CoRoT est trop courte pour déterminer d’une manière non-équivoque la structure interne des étoiles magnétiques chaudes, et par conséquent pour distinguer leur structure interne de celle des étoiles chaudes non-magnétiques.Malgré nos efforts de modélisation détaillée de la meilleure étoile chaude pulsantemagnétique HD43317, nous n’avons pas pu corroborer observationnellement les prédictions théoriques d’une structure interne altérée pour les étoiles chaudes magnétiques. Des simplifications et des approximations ont dû être faites au cours de la modélisation sismique en raison de la résolution en fréquence limitée des données CoRoT. D’autres efforts pour inclure le magnétisme dans les codes de pulsations ou le magnétisme, la rotation et le transfert du moment cinétique dans les modèles d’évolution stellaire seront nécessaires afin de déterminer si les signatures magnétiques sont présentes pour les nombreux pulsateurs gravito-inertiels récemment découverts dans la base de données de Kepler. / About ten percent of stars with spectral type O, B or A have a detectable stable strong large-scale magnetic field at their surface, which most often resembles a magnetic dipole. These large-scale magnetic fields extend into the radiative layers of the OBA stars. Theory and simulations predict that they alter the internal structure and physical properties of these stars. In particular, it is expected that these large-scale magnetic fields enforce uniform rotation in the radiative layers and may suppress convective core overshooting. This has consequences for the evolution of these magnetic hot stars and it has implications for galactic evolution. Therefore, we observed and investigated the internal structure of magnetic hot stars. To do so, asteroseismology is the best method as the oscillation properties are directly related to the internal physical conditions. Various types of stellar oscillations are known and they are classified based on their dominant restoring force. Of these, gravity modes are governed by the buoyancy force and have their strongest probing power in the near core region, which is the domain of our interest.Our first objective was to identify pulsating magnetic hot stars and characterize their magnetic and seismic properties. We constructed a sample of magnetic candidate stars, by following indirect observational diagnostics for the presence of a large-scale magnetic field, to confirm with ground-based high-resolution optical spectropolarimetry taken with ESPaDOnS, Narval or HARPSpol. For two known magnetic stars, HD43317 and o Lup, we characterized the geometry and strength of the field in detail by analysing spectropolarimetric time series. For each star in our sample, we obtained high-cadence high-precision space-based photometry from BRITE, CoRoT, or K2 to study (periodic) variability. Only HD43317 revealed tens of stellar pulsations mode frequencies that pointed towards gravity modes. Only a few other stars studied showed a few pulsation mode frequencies, unsuitable for seismic modelling.We investigated the B3.5V star HD43317 in detail to determine the internal structure of a magnetic hot star. We did this by forward seismic modelling, where observed stellar pulsation mode frequencies in the CoRoT data covering ∼150d were fit to those of gravito-intertial modes computed with the pulsation code GYRE, coupled to MESA stellar structure models. We identified the pulsation mode frequencies as overlapping (l, m) = (1,-1) and (2,-1) mode series. The small convective core overshooting region derived from the seismic modelling was in line with the theoretical predictions. Yet, some of the parameters for the best fitted models were also compatible with literature values for non-magnetic pulsators within the derived uncertainties. We conclude that the CoRoT time series of ∼150d is too short to lead to stringent constraints and tests of the stellar interior to discriminate between magnetic and non-magnetic pulsating hot stars.From our detailed modelling efforts of the best studied pulsating magnetic hot star HD43317, we were unable to observationally corroborate the theoretical predictions of an altered internal structure for magnetic hot stars. Simplifications and approximations were made during the forward seismic modelling due to the limited frequency resolution of the CoRoT data in terms of its time base. Further efforts to include magnetism in the pulsation codes, or magnetism, rotation, and angular momentum transport in the evolutionary models, are worthwhile to test whether magnetic signatures are present in the numerous (non-magnetic) gravito-inertial pulsators recently found in the nominal Kepler database (which has a ten times better frequency resolution compared to CoRoT).
7

Sismologie solaire et stellaire

Lambert, Pascal 21 March 2007 (has links) (PDF)
La thèse présentée ici se place dans le cadre de la sismologie du Soleil et des étoiles, dans une période de transition entre une bonne connaissance du Soleil grâce à l'héliosismologie et le développement actuel de l'astérosismologie, et, entre une vision statique et une vision dynamique des étoiles. Le but de mon travail a été de participer à cet effort en dépasser la vision statique des intérieurs stellaires et via le développement d'outils d'analyse des données des missions spatiales. Ainsi le modèle solaire standard actuel, la représentation théorique de l'intérieur solaire, présente des limites, mises en avant par une récente révision de ses abondances. Nous montrons que l'écart entre le modèle standard et les observations sismiques est fortement dégradé motivant l'introduction de processus dynamiques dans les modèles. Nous avons aussi entrepris l'introduction d'effets magnétiques dans les couches superficielles pour améliorer la prédiction des fréquences et l'analyse sismique. Les missions spatiales astérosismiques, présentes et futures, permettent d'avoir accès à des informations sur la dynamique des étoiles (rotation, convection, . . .). Pour améliorer ces informations contenues dans les spectres d'oscillations, il est nécessaire d'effectuer une bonne identification des modes ainsi qu'une extraction précise de ces paramètres. Nous montrons comment améliorer ceci en développant une analyse du diagramme-échelle basée sur la récente transformée en curvelette. Cette méthode a pu être validées grâce à des simulations ainsi que dans le cadre d'exercices pour la préparation à la mission CoRoT. Nous nous sommes également intéressé à l'étoile Procyon observée par MOST.
8

Apports de la sismologie des étoiles F et G à l'étude des cœurs convectifs.

Deheuvels, Sébastien 19 October 2010 (has links) (PDF)
La qualité des données sismiques du satellite CoRoT ouvre de nouveaux horizons dans l'étude de la structure interne et de l'évolution des étoiles. Mon travail de thèse a consisté à l'analyse et à l'interprétation des spectres d'oscillations de pulsateurs de type solaire observés au sol et depuis l'espace, en particulier avec le satellite CoRoT. L'objectif de l'analyse d'un spectre d'oscillations est de déterminer les paramètres des modes propres de l'étoile (fréquences propres, amplitudes, durées de vie). Au sein du DAT (groupe en charge de l'analyse des pulsateurs de type solaire observés avec CoRoT), j'ai contribué à adapter aux objets étudiés une méthode utilisée avec succès pour extraire les paramètres des modes du Soleil. J'ai appliqué cette méthode à l'analyse des cinq premiers pulsateurs de type solaire observés avec CoRoT. Un soin particulier a été consacré à l'étude de la significativité des pics détectés, qui a permis de conforter la détection de modes mixtes dans le spectre de l'étoile HD 49385. Dans le cadre de mon travail de modélisation et d'interprétation, j'ai recherché les informations qu'apportent les paramètres sismiques sur la structure du cœur de certaines des étoiles analysées. Ces étoiles possèdent (ou ont possédé) un cœur convectif, dont les caractéristiques dépendent des processus de transport des éléments chimiques (e.g. l'overshooting), aujourd'hui mal décrits par les modèles théoriques. J'ai modélisé trois pulsateurs de type solaire de masses et de stades évolutifs différents, dont les paramètres sismiques permettent de sonder le cœur et donc de contraindre observationnellement les processus de transport. En particulier, la détection dans l'étoile HD 49385 de modes mixtes en croisement évité m'a amené à étudier l'apport de ce type de mode à la compréhension de la structure du cœur.
9

Rôle de la rotation différentielle sur le spectre basse fréquence des étoiles en rotation rapide / Role of differential rotation on low-frequency oscillation spectra of fast-rotating stars

Mirouh, Giovanni Marcello 18 October 2016 (has links)
Les étoiles massives sont les principaux contributeurs à l'enrichissement du milieu interstellaire. Ce sont généralement des rotateurs rapides, dotés d'une enveloppe radiative dans laquelle l'interaction de la stratification et la rotation génère une rotation différentielle. Celle-ci peut alimenter divers phénomènes de transport et l'évolution rapide de l'étoile. Nombre de ces étoiles sont par ailleurs des pulsateurs classiques. Cette thèse s'intéresse en premier lieu à l'interaction entre la rotation différentielle et les pulsations à basse fréquence dans l'étoile : celles-ci sont des modes gravito-inertiels dont la force de rappel est une combinaison de la force de Coriolis et de la poussée d'Archimède. Ils sondent les couches profondes de l'étoile, et sont étudiés suivant deux méthodes : dans la limite non-dissipative par la méthode des caractéristiques, et dans le cas dissipatif par la résolution du problème complet par une méthode spectrale. Nous mettons en évidence différentes singularités (attracteurs, latitudes critiques, résonances de corotation, piégeage en coin) et des modes réguliers. Certains modes sont excités par des instabilités baroclines, qui, si des effets non-linéaires provoquent leur saturation, permettent l'existence d'un mécanisme d'excitation nouveau dû à la rotation différentielle. Dans un second temps, nous avons associé le code de structure ESTER au code de calcul d'oscillations TOP. Ces deux codes calculent les quantités dans une étoile en deux dimensions et les modes associés en tenant compte des effets de la rotation de façon complète. Nous utilisons visibilités et taux d'amortissement des modes pour sélectionner dans le spectre synthétique les meilleurs candidats à l'identification des modes observés. Nous présentons une application au rotateur rapide Rasalhague (aOph), pour lequel de nombreuses observations sont disponibles. Nous n'avons pas obtenu une identification des modes univoque, mais le problème est maintenant mieux cerné et diverses pistes de progrès ont été identifiées. / Massive stars are the main contributors of the interstellar medium enrichment. These stars are usually fast rotators, with a radiative envelope in which the interaction between stratification and rotation gives rise to a differential rotation. This can trigger transport phenomena in the star, and affect its fast evolution. Besides, many of these stars are classical pulsators. This work focuses first on the impact of a differential rotation on the low-frequency oscillation spectrum which contains gravito-inertial modes. These modes are restored by the combination of buoyancy and Coriolis force and probe deep layers of stars. Our study is twofold : we compute the paths of characteristics in the non-dissipative limit, and solve the fully-dissipative eigenvalue problem numerically using a spectral decomposition. We find various singularities (attractors, critical latitudes, corotation resonances, wedge-trapping) and regular modes. Some of these modes are excited by baroclinic instabilities that may saturate through non-linear effects. If so, we have discovered a new excitation mechanism for these modes, driven by differential rotation. Aside of this theoretical work ; we have considered the case of Rasalhague (aOph), which is a well-known fast rotator. We studied this star by associating the ESTER structure code with the TOP oscillation code. Both of these codes use a two-dimensional structure, taking rotation effects fully into account. We use the mode damping rates and visibilities to filter the best candidates for observed modes identification out of the synthetic spectra. Even though we could not reach a satisfactory identification of the observed frequencies, we improved our understanding of the problem and identified the next steps to be taken.
10

Caractériser les populations stellaires à l'aide d'indices sismiques / Characterise the stellar populations using seismic indices

De Assis Peralta, Raphaël 03 February 2016 (has links)
A l'instar de la sismologie terrestre, l'astérosismologie est l'étude des tremblements d'étoiles. Ces vibrations internes sont observées via les variations de luminosité (ou de vitesse) qui se manifestent à leurs surfaces. A partir de ces séries temporelles, on calcule les spectres de puissance qui contiennent une véritable mine d'informations. En particulier, pour les pulsateurs de types solaires, nous pouvons observer le signal de la granulation ainsi que les modes propres d'oscillations stellaires qui sont tous deux une conséquence directe de la convection dans l'enveloppe de l'étoile. L'astérosismologie permet de sonder l'intérieur des étoiles comme une échographie. Par ailleurs, avec les grands relevés de photométrie spatiale CoRoT et Kepler, un nouveau champ d'application pour la sismologie est apparu. En effet, il est possible de caractériser au premier ordre les spectres d'oscillations des pulsateurs de types solaires à partir de quelques indices que nous appellerons indices sismiques. Ces derniers permettent via des relations simples d'estimer les paramètres fondamentaux de ces étoiles. Cela fait de l'astérosismologie un outil très puissant pour l'étude des populations stellaires.Dans la perspective du développement de la base de données Stellar Seismic Indices (SSI - Ouverture de la base SSI prévue pour l'été 2016. Lien vers la base: http://ssi.lesia.obspm.fr/), l'objet de ma thèse a été de développer une méthode automatique capable d'extraire simultanément les indices sismiques et les paramètres caractérisant la granulation des pulsateurs de types solaires. Cette méthode, appelée MLEUP, a été pour l'instant optimisée pour les géantes rouges car CoRoT et Kepler ont observé plusieurs dizaines de milliers de géantes rouges contre quelques centaines de pulsateurs de type solaire de séquence principale. Le MLEUP présente un avantage majeur par rapport à la plupart des méthodes existantes : il utilise le patron universel d'oscillations (UP) des géantes rouges comme modèle d'ajustement du spectre d'oscillations, ce qui permet d'analyser le spectre non lissé, donc non dégradé, et d'ajuster simultanément la composante de granulation et celle des oscillations par l'estimation du maximum de vraisemblance (MLE). Le MLEUP a dans un premier temps été testé par des simulations Monte Carlo afin de quantifier ses performances. Ces dernières se sont révélées très bonnes, avec de faibles biais et dispersions. Dans un second temps, nous avons appliqué le MLEUP à plus de 36.500 étoiles observées par CoRoT et Kepler, parmi lesquelles nous obtenons les indices sismiques et les paramètres de la granulation pour plus de 13.500 étoiles. Ces résultats ont d'ores et déjà été utilisés dans plusieurs travaux et leur utilisation devrait s'intensifier rapidement. / Like terrestrial seismology, asteroseismology is the study of star quakes. These internal vibrations are detected by observing the luminosity (or velocity) variations at the stellar surfaces. From these time series, one computes power spectra which contain a wealth of information. In particular, for solar-like pulsators, we are able to observe the signal of granulation as well as the eigenmodes of stellar oscillations, both of which are a direct consequence of the convection in the star's envelope. Asteroseismology allows us to probe the interior of stars much like an ultrasound. Furthermore, with the large spatial photometric surveys CoRoT and Kepler, a new scope for seismology appeared. Indeed, it is possible to characterise to first order the oscillation spectra of solar-like pulsators with few indices or parameters, called seismic indices. Using simple relations, they allow us to estimate fundamental parameters of these stars. Asteroseismology is by consequence a very powerful tool for the study of stellar populations.In the perspective of the development of the Stellar Seismic Indices (SSI - The opening of the SSI database is planned for the summer of 2016, see http://ssi.lesia.obspm.fr/).) database, the purpose of my thesis was to develop an automatic method able to extract simultaneously the seismic indices and the parameters characterizing the granulation signature of solar-like pulsators. This method, called MLEUP, was optimized for red giants because for the few hundred main-sequence solar-like pulsators observed by CoRoT and Kepler, several tens of thousands of red giants have been observed by these same missions. MLEUP has a major advantage over most existing methods: it relies on the use red-giant stellar oscillation universal pattern (UP) to fit the oscillation spectra. This allows us to analyse the unsmoothed spectrum and fit simultaneously both granulation and oscillations with the maximum likelihood estimate (MLE).As a first step, MLEUP was tested on Monte Carlo simulations in order to quantify its performances. These simulations have revealed that MLEUP achieves very good performances, with low biases and dispersions. As a second step, we applied MLEUP to more than 36,500 stars observed by CoRoT and Kepler, thereby yielding seismic indices and granulation parameters for more than 13,500 stars. Those results have already been used in several works and are expected to be used in many more.

Page generated in 0.4472 seconds