• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Astroglial phenotype in vivo and in vitro

Emmett, C. January 1988 (has links)
No description available.
2

L’astrocyte, intégrateur et régulateur de l'activité synaptique excitatrice dans des conditions physiologiques et pathologiques. / Astrocytes, integrators and regulators of excitatory synaptic activity under physiological and pathological conditions

Pommier, Dylan 20 June 2019 (has links)
Les données accumulées au cours des deux dernières décennies ont montré que l’astrocyte joue un rôle clé dans la régulation de la transmission synaptique. Cela est dû à sa capacité à détecter, via des récepteurs, et réguler, via la libération de gliotransmetteurs, la transmission synaptique. Cependant, les astrocytes deviennent réactifs dans des conditions pathologiques comme la maladie d’Alzheimer et la régulation de l’activité neuronale par ces cellules est susceptible d’être altérée.L'objectif principal de cette thèse est d'étudier le rôle de l‘astrocyte en tant qu'intégrateur et modulateur de la transmission synaptique dans des conditions physiologique et pathologique.Premièrement, nous avons montré qu’un astrocyte est capable de détecter et d’augmenter la transmission synaptique de base au niveau d’une synapse chez des rats jeunes. On ignore si cette régulation est toujours présente chez les adultes et si elle est affectée par l'activité synaptique des synapses voisines présentes dans le même domaine astrocytaire. En utilisant l’imagerie STED et des enregistrements électrophysiologiques sur des tranches d’hippocampes de rats adultes, nous montrons ici que la voie de régulation décrite précédemment est également présente chez les adultes. En effet, les astrocytes détectent la transmission glutamatergique de base au niveau de synapses individuelles par le biais des mGluR5 et l’augmente en libérant des purines qui activent les récepteurs présynaptiques A2A. Plus important encore, nos données suggèrent fortement qu'un astrocyte est capable d'adapter sa régulation de la transmission glutamatergique en fonction du nombre de synapses activées dans son domaine. Lorsque le nombre d’afférences activées est faible, les astrocytes facilitent l'efficacité synaptique par un mécanisme dépendant des purines. Fait intéressant, ce processus n’est plus présent lorsqu’un plus grand nombre d’afférences est activé, ce qui suggère que les astrocytes sont capables d’intégrer différemment les informations entrantes et d’adapter leur réponse en termes de libération de purine.Deuxièmement, des études sur des modèles de la maladie d’Alzheimer ont rapporté que plusieurs fonctions astrocytaires, comme leur capacité à réguler la transmission synaptique, étaient perturbées. Cependant, la contribution de la réactivité astrocytaire dans cette pathologie reste méconnue et débattue du fait que les modifications rapportées dans ces études peuvent être bénéfiques et/ou néfastes pour les neurones. En effet, les astrocytes réactifs présentent une hétérogénéité morphologique, moléculaire et fonctionnelle qui peut expliquer leurs effets controversés dans cette pathologie. Pour comprendre comment la réactivité astrocytaire contribue à la maladie d'Alzheimer et trouver des voies thérapeutiques, il est essentiel de développer une nouvelle stratégie qui module efficacement tous les types d'astrocytes réactifs. Ici, nous avons utilisé des approches in vivo visant spécifiquement les astrocytes et identifié la voie JAK2/STAT3, comme étant nécessaire et suffisante pour l'induction et le maintien de la réactivité astrocytaire. La modulation de cette cascade par approche virale contrôle efficacement plusieurs caractéristiques morphologiques et moléculaires de la réactivité. De plus, son inhibition chez des modèles murins de la maladie d'Alzheimer améliore des caractéristiques pathologiques clés en réduisant les dépôts amyloïdes et en améliorant l'apprentissage spatial. En combinant l’approche virale avec des enregistrements électrophysiologiques, notre équipe a montré que réduire la réactivité astrocytaire en inhibant la voie JAK2/STAT3 rétablit les déficits de transmission synaptique et de plasticité observés chez un modèle 3xTg de la maladie d'Alzheimer. En conclusion, la cascade JAK2/STAT3 est un régulateur principal de la réactivité astrocytaire in vivo. Son inhibition offre de nouvelles opportunités thérapeutiques pour la maladie d'Alzheimer. / Data accumulated over the two last decades have demonstrated that astrocytes play key roles in the regulation of synaptic transmission and plasticity. This is due to their capability to detect and regulate synaptic transmission by expressing receptors and releasing gliotransmitters, respectively. However, astrocytes become reactive in pathological condition such as Alzheimer’s disease, and neuronal activity regulation by these glial cells is likely to be altered.The main objective of this thesis is to study the role of astrocytes as integrators and modulators of synaptic transmission under both physiological and pathological conditions.First, we have shown that a single astrocyte is able to detect and in turn up-regulate basal synaptic transmission at individual synapses in juvenile rats. Whether this upregulation is still present in adults and whether it is affected by the synaptic activity occurring at neighboring synapses present within the same astroglial domain is unknown. Using STED imaging on fixed tissue and electrophysiological recordings on acute hippocampal slices of adult male rats we here show that the upregulation pathway previously described in juvenile rats is also present in adults. Indeed, as in juvenile, astrocytes detect basal glutamatergic transmission at individual synapses through mGluR5 and in turn upregulate it by releasing purines and activating presynaptic A2A receptors. More importantly, our data suggest strongly that an individual astrocyte is able to adapt its purine-mediated regulation of glutamatergic transmission as a function of the number of synapses activated in its domain. When the number of afferent inputs activated is small, astrocytes facilitate synaptic efficacy through a purine-mediated process. Interestingly, this process is no longer present when a higher number of afferences is activated, suggesting the astrocytes integrate the incoming information and adapt its response in terms of purine release.Second, studies on Alzheimer’s disease models have reported changes in several astrocyte functions such as its ability to regulate synaptic transmission. However, the contribution of astrocytic reactivity in this pathology remains largely unknown and debated as the reported changes in these studies can have beneficial, deleterious or even mixed effects on neurons. Indeed, reactive astrocytes display a morphological, molecular and functional heterogeneity that could explain their controversial effects in this pathology. To understand how astrocyte reactivity contributes to Alzheimer's disease and to find therapeutic pathways, it is crucial to develop a new strategy that efficiently modulates all types of reactive astrocytes. Here, we used cell type-specific approaches in vivo and identified the JAK2/STAT3 pathway, as necessary and sufficient for the induction and maintenance of astrocyte reactivity. Modulation of this cascade by viral gene transfer in mouse astrocytes efficiently controlled several morphological and molecular features of reactivity. Inhibition of this pathway in mouse models of Alzheimer's disease improved key pathological hallmarks by reducing amyloid deposition and improving spatial learning. Combining this viral gene transfer with electrophysiological recordings, we specifically showed in our lab that reducing astrocyte reactivity by inhibiting JAK2/STAT3 cascade in astrocytes restores synaptic transmission and plasticity deficits observed in a 3xTg mouse model of Alzheimer's disease. In conclusion, the JAK2/STAT3 cascade operates as a master regulator of astrocyte reactivity in vivo. Its inhibition offers new therapeutic opportunities for Alzheimer's disease.
3

The LRIG-family: identification of novel regulators of ErbB signaling with clinical implications in astrocytoma

Nilsson, Jonas January 2006 (has links)
Astrocytic tumors are the most common malignancies of the central nervous system, accounting for more than 60% of all primary brain tumors. The prognosis for high grade astrocytoma patients is dismal and there is no curative treatment, today. A molecular hallmark of astrocytic tumors is dysregulated receptor tyrosine kinase signaling, especially of the epidermal growth factor receptor (EGFR, ErbB1). The aim of the present thesis was to identify endogenous human proteins that downregulate the function of the ErbB1 receptor. We identified a human gene family, the leucine-rich repeats and immunoglobulin-like domains family (LRIG), consisting of LRIG1, LRIG2 and LRIG3, which might fulfill this criterion. Two candidates were identified, LRIG1 and LRIG2, which genes were localized to regions frequently deleted in human cancers, chromosome bands 3p14 and 1p13, respectively. LRIG1 and LRIG2 mRNA were expressed in all tissues analyzed, with high expression in brain and other organs. The LRIG mRNA were predicted to encode integral membrane proteins. Antibodies against LRIG1 and LRIG2 were developed and the protein expression was analyzed. LRIG1 was found to have an apparent molecular weight of 143 kDa and was expressed in most tissues with high expression in glandular tissues of the breast and prostate, and the peptic cells of the stomach. LRIG2 was slightly smaller and had an apparent molecular weight of 132 kDa. The LRIG proteins were localized to the cell surface and to perinuclear structures, where LRIG1 co-localized with the trans-Golgi network and early endosomes. LRIG1 was found to restrict growth factor signaling by enhancing receptor ubiquitylation and degradation. We showed that LRIG1 interacted with all four members of the ErbB family and induced their downregulation. The interaction with ErbB1 involved both the LRR-domains and the Ig-like domains of LRIG1. LRIG1 enhanced receptor degradation by recruiting the E3 ubiquitin ligase c-Cbl to the LRIG1-ErbB1 complex. LRIG1, LRIG2, and LRIG3 were expressed in glioma cell lines and tumor tissues. The LRIG expression was analyzed in 404 astrocytic tumor samples. We found that perinuclear LRIG protein expression correlated with increased survival of patients with astrocytic tumors. Especially perinuclear LRIG3 showed strong correlations with patient survival and tumor cell proliferation index. In summary, this thesis contains the discovery and characterization of human LRIG1 and LRIG2. LRIG1 was found to interact with ErbB receptors and downregulate their function. In a clinical material, expression of LRIG proteins correlated with survival in patients with astrocytic tumors.
4

Co-localization of the astrocytic proteins Mts1 and clusterin in CNS injury

Augustsson, Mirja January 2005 (has links)
<p>In the case of injury to the CNS, different proteins act to repair and protect cells in the brain and spinal cord. In the present study, we looked at dorsal root injury and hypoglossal nerve avulsion and transection. Here we studied for the first time the expression of Parkin in these types of injuries. However the antibodies against Parkin used here have not been able to detect Parkin in the injuries examined, neither with fluorescence or using DAB. The roles of Mts1, GFAP, and clusterin after injury have been investigated earlier, but their co-localization in the same cells was first shown in this study in the hypoglossal nucleus with immunohisto-chemical methods. These results may also be of value in the process of finding an effective treatment for neurodegenerative disorders such as ALS.</p>
5

Co-localization of the astrocytic proteins Mts1 and clusterin in CNS injury

Augustsson, Mirja January 2005 (has links)
In the case of injury to the CNS, different proteins act to repair and protect cells in the brain and spinal cord. In the present study, we looked at dorsal root injury and hypoglossal nerve avulsion and transection. Here we studied for the first time the expression of Parkin in these types of injuries. However the antibodies against Parkin used here have not been able to detect Parkin in the injuries examined, neither with fluorescence or using DAB. The roles of Mts1, GFAP, and clusterin after injury have been investigated earlier, but their co-localization in the same cells was first shown in this study in the hypoglossal nucleus with immunohisto-chemical methods. These results may also be of value in the process of finding an effective treatment for neurodegenerative disorders such as ALS.
6

Sterol Transport Protein ORP6 Regulates Astrocytic Cholesterol Metabolism and Brain Aβ Deposition

Vijithakumar, Viyashini 07 September 2023 (has links)
The mammalian brain is the most cholesterol-rich organ of the body, requiring in situ de novo cholesterol synthesis to maintain its cholesterol requirement. Defects in brain cholesterol homeostasis are implicated in cognitive deficits related to aging and in neurodegenerative diseases such as Alzheimer's Disease (AD). Oxysterol-binding protein (OSBP) - related proteins are highly conserved cytosolic proteins that coordinate lipid homeostasis by regulating cell signaling, inter-organelle membrane contact sites and non-vesicular transport of cholesterol. Previously, ORP6, a poorly characterized member of this family, was found to be part of complex transcriptional cascade coordinated by SBREP2 and emerged as a novel regulator of intracellular cholesterol trafficking in hepatocytes and macrophages. Yet how ORP6 regulates these pathways and its function in the brain where it is most highly expressed is unknown. Here, we show that ORP6 is highly expressed in the brain, where it exhibits spatial and cell-type specific expression. ORP6 expression is enriched in the hippocampus and caudal-putamen brain regions, specifically within neurons and astrocytes. ORP6 knockdown in astrocytes altered the expression of cholesterol biosynthesis, cholesterol efflux and cholesterol esterification genes, resulting in the accumulation of esterified cholesterol within cytoplasmic lipid droplets and reduced cholesterol efflux highlighting a role for ORP6 in astrocytic cholesterol metabolism. We also present in this thesis, the newly generated second viable ORP family member knockout mouse. ORP6 ablation in mice results in the dysregulation of brain and whole-body lipid homeostasis, increased Aβ deposition in the brain and neuroanatomical alterations. Together, our findings highlight a critical role for cholesterol trafficking proteins in brain cholesterol homeostasis and identify ORP6 as a potential novel target for AD.
7

Physiological Interactions between Neuronal Active Conductances And Inositol Trisphosphate Receptors in Neurons and Astrocytes

Ashhad, Sufyan January 2015 (has links) (PDF)
Intricate interactions among constituent components are defining hallmarks of biological systems and sculpt physiology across different scales spanning gene networks to behavioural repertoires. Whereas interactions among channels and receptors define neuronal physiology, interactions among different cells specify the characteristic features of network physiology. From a single-neuron perspective, it is now evident that the somato-dendritic plasma membrane of hippocampus pyramidal neurons is endowed with several voltage-gated ion channels (VGICs) with varying biophysical properties and sub cellular expression profiles. Structural and physiological interactions among these channels define generation and propagation of electrical signals, thereby transforming neuronal dendrites to actively excitable membrane endowed with complex computational capabilities. In parallel to this complex network of plasma membrane channels is an elegantly placed continuous intraneuronal membrane of the endoplasmic reticulum (ER) that runs throughout the neuronal morphology. Akin to the plasma membrane, the ER is also endowed with a variety of channels and receptors, prominent among them being the inositol trisphosphate (InsP3) receptors (InsP3Rs) and ryanodine receptors (RyR), both of which are calcium release channels. Physiological interactions among these receptors transform the ER into a calcium excitable membrane, capable of active propagation of calcium waves and of spatiotemporal integration of neuronal signals. Thus, a neuron is endowed with two continuously parallel excitable membranes that actively participate in the bidirectional flow of intraneuronal information, through interactions among different channels and receptors on either membrane. Although the interactions among sets of channels and receptors present individually on either membrane are very well characterized, our understanding of cross-membrane interactions among channels and receptors across these two membranes has been very limited. Recent literature has emphasized the critical nature of such cross-membrane interactions and the several physiological roles played by such interactions. Such cross-channel interactions include ER depletion-induced signaling involving store-operated calcium channels, generation and propagation of calcium waves through interactions between plasma membrane and ER membrane receptors, and the plasticity of plasma membrane VGICs and receptors induced by ER Ca2+. Such tight interactions between these two membranes have highlighted several roles of the ER in the integration of intraneuronal information, in regulating signalling microdomains and in regulating the downstream signaling pathways that are regulated by these Ca2+ signals. Yet, our understanding about the functional interactions between the ion channels and receptors present on either of these membranes is very limited from the perspective of the combinatorial possibilities that encompass the span of channels and receptors across these two membranes. In this context, the first part of this thesis deals with two specific instances of such cross-membrane functional interactions, presented as two subparts with each probing different direction of impact. Specifically, whereas the first of these subparts deals with the impact of plasma membrane VGICs on the physiology of ER receptors, the second subpart presents an instance of the effect of ER receptor activation on plasma membrane VGIC. In the first subpart of the thesis, we establish a novel role for the A-type potassium current in regulating the release of calcium through inositol triphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampus pyramidal neurons. Specifically, the A-type potassium current has been implicated in the regulation of several physiological processes including the regulation of calcium influx through voltage-gated calcium channels (VGCCs). Given the dependence of InsP3R open probability on cytosolic calcium concentration ([Ca2+]c) we asked if this regulation of calcium influx by A-type potassium current could translate into the regulation of release of calcium through InsP3Rs by the A-type potassium current. To answer this, we constructed morphologically realistic, conductance-based neuronal models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density of A-type potassium current, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendrite diameter and wave initiation occurred at branch points as a consequence of high surface area to volume ratio of oblique dendrites. Further, analogous to the role of A-type potassium channels in regulating spike latency, we found that an increase in the density of A-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (miler) signalling components and a calcium-controlled plasticity rule into our model and demonstrate that the presence of mGluRs induced a leftward shift in a BCM-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. These results establish a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-caliber dendrites. Furthermore, they uncover a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling micro domains through changes in dendritic excitability. In the second subpart, we turned our focus to the role of calcium released through InsP3Rs in regulating the properties of VGICs present on the plasma membrane, thereby altering neuronal intrinsic properties that are dependent on these VGICs. Specifically, the synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signalling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. Here, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if ER InsP3R activation was sufficient to induce plasticity in intrinsic properties of hippocampus neurons. To do this, we employed whole-cell patch-clamp recordings to infuse D-myo-InsP3, the endogenous ligand for InsP3Rs, into hippocampus pyramidal neurons and assessed the impact of InsP3R activation on neuronal intrinsic properties. We found that such activation reduced input resistance, maximal impedance amplitude and temporal summation, but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead of hippocampus pyramidal neurons. Strikingly, the magnitude of plasticity in all these measurements was dependent upon [InsP3], emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-D -aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. These results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics through changes in plasma membrane ion channels, thereby revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis. Whereas the first part of the thesis dealt with bidirectional interactions between ER membrane and plasma membrane channels/receptors within a neuron, second part focuses on cross-cellular interactions, specifically between ER membrane on astrocytes and dendritic plasma membrane of neurons. Specifically, the universality of ER-dependent calcium signalling ensures that its critical influence extends to regulating the physiology of astrocytes, an abundant form of glial cells in the hippocampus. Due to the presence of calcium release channels on ER membrane, astrocytes are calcium excitable, whereby they respond to neuronal activity by increase in their cytosolic calcium levels. Specifically, astrocytes respond to the release of neurotransmitters from neuronal presynaptic terminals through activation of metabotropic receptors expressed on their plasma membrane. Such activation results in the mobilization of cytosolic InsP3 and subsequent release of calcium through InsP3 on the astrocytes ER membrane. These ER-dependent [Ca2+]c elevations in astrocytes then result in the release of gliotransmitters from astrocytes, which bind to corresponding receptors located on neuronal plasma membrane resulting in voltage-deflections and/or activation of signaling pathways in the neuron. Although it is well established that gliotransmission constitutes an important communication channel between astrocytes and neurons, the impact of gliotransmission on neurons have largely been centered at the cell body of the neurons. Consequently, the impact of the activation of astrocytic InsP3R on neuronal dendrites, and the role of dendritic active conductances in regulating this impact have been lacking. This lacuna in mapping the spatial spread of gliotransmission in neurons is especially striking because most afferent synapses impinge on neuronal dendrites, and a significant proportion of information processing in neurons is performed in their dendritic arborization. Additionally, given that active dendritic conductances play a pivotal role in regulating the impact of fast synaptic neurotransmission on neurons, we hypothesized that such active-dendritic regulation should extend to the impact of slower extrasynaptic gliotransmission on neurons. The second part of the thesis is devoted to testing this hypothesis using dendritic and paired astrocyte-neuron electrophysiological recordings, where we also investigate the specific roles of active dendritic conductances in regulating the impact of gliotransmission initiated through activation of astrocytic InsP3Rs. In testing this hypothesis, in the second part of the thesis, we first demonstrate a significantly large increase in the amplitude of astrocytically originating spontaneous slow excitatory potentials (SEP) in distal dendrites compared to their perisomatic counterparts. Employing specific neuronal infusion of pharmacological agents, we show that blocking HCN channels increased the frequency, rise-time and width of dendritically-recorded spontaneous SEPs, whereas blockade of A-type potassium channels enhanced their amplitude. Next, through paired neuron-astrocytes recordings, we show that our conclusions on the differential roles of HCN and A-type potassium channels in modulating spontaneous SEPs also extended to SEPs induced through infusion of InsP3 in a nearby astrocyte. Additionally, employing subtype-specific receptor blockers during paired neuron-astrocyte recordings, we provide evidence that GluN2B-and GluN2D-containing NMDARs predominantly mediate perisomatic and dendritic SEPs, respectively. Finally, using morphologically realistic conductance-based computational models, we quantitatively demonstrate that dendritic conductances play an active role in mediating compartmentalization of the neuronal impact of gliotransmission. These results unveil an important role for active dendrites in regulating the impact of gliotransmission on neurons, and suggest astrocytes as a source of dendritic plateau potentials that have been implicated in localized plasticity and place cell formation. This thesis is organized into six chapters as follows: Chapter 1 lays the motivations for the questions addressed in the thesis apart from providing the highlights of the results presented here. Chapter 2 provides the background literature for the thesis, introducing facts and concepts that forms the foundation on which the rest of the chapters are built upon. In chapter 3, we present quantitative analyses of the physiological interactions between A-type potassium conductances and InsP3Rs in CA1 pyramidal neurons. In chapter 4, using electrophysiological recordings, we investigate the role of calcium released through InsP3Rs in induction of plasticity of intrinsic response dynamics, and demonstrate that this form of plasticity is consequent to changes in neuronal HCN channels. In chapter 5, we systematically map the spatial dynamics of the impact of gliotransmission on neurons across the somato-apical trunk, also unveiling the role of neuronal HCN and A-type potassium channels in compartmentalizing such impact. Finally, chapter 6 concludes the thesis highlighting its major contributions and discussing directions of future research.
8

Μορφολογική μελέτη της έκφρασης του οιστρογονικού υποδοχέα β (ERβ), συν-ρυθμιστών της μεταγραφής και πιθανών δεικτών καρκινικών stem κυττάρων σε αστροκυτταρικούς όγκους εγκεφάλου. Μια συστημική προσέγγιση

Κεφαλοπούλου, Ζηνοβία - Μαρία 15 October 2012 (has links)
Τα αστροκυττώματα αποτελούν το συχνότερο τύπο πρωτοπαθών όγκων του κεντρικού νευρικού συστήματος (ΚΝΣ) και παραδοσιακά θεωρούνται ότι σχετίζονται με ιδιαίτερα δυσμενή πρόγνωση. Η Συστημική προσέγγιση της καρκινογένεσης, εστιάζοντας στην αποκρυπτογράφηση του τρόπου λειτουργίας και δυναμικής αλληλεπίδρασης πολύπλοκων παθοβιολογικών δικτύων, προσφέρει σήμερα καινούριες ερευνητικές προοπτικές και πιθανές εναλλακτικές, περισσότερο αποτελεσματικές θεραπευτικές στρατηγικές. Οι οιστρογονικοί υποδοχείς και οι συν – ρυθμιστές της μεταγραφής συνιστούν κομβικά σημεία “συνομιλίας” (cross – talk) πολύπλοκων μοριακών οδών του κυττάρου, διαμεσολαβώντας πλήθος κυτταρικών λειτουργιών φυσιολογικά αλλά και σε παθολογικές καταστάσεις, ανάμεσα στις οποίες και ο καρκίνος. Οι παράγοντες EZH2 και SOX2 θεωρούνται μόρια κλειδιά του ρυθμιστικού μεταγραφικού κυκλώματος που χαρακτηρίζει το stemness. Η αποσαφήνιση της συμπεριφοράς του συγκεκριμένου αυτού δικτύου στα διάφορα νεοπλάσματα και ρόλος του σε σχέση με την απόκτηση ιδιότητας καρκινικού stem κυττάρου, θεωρείται καθοριστικής σημασίας στην προσπάθεια ερμηνείας του φαινομένου του καρκίνου ως πολύπλοκο προσαρμόσιμο σύστημα, που θα αναδείξει εναλλακτικούς θεραπευτικούς στόχους και θα επιτρέψει περισσότερο αποτελεσματικές σε σχέση με τις υπάρχουσες παρεμβάσεις. Σκοπός. Υπό το πρίσμα της Συστημικής προσέγγισης της κατανόησης της κακοήθους ανάπτυξης και εξέλιξης των αστροκυτταρικών όγκων, η παρούσα μελέτη διερεύνησε τα επίπεδα έκφρασης του Οιστρογονικού υποδοχέα β (ERβ), και των συν – ρυθμιστών AIB1, TIF2 and PELP1, όπως και την έκφραση των παραγόντων EZH2 και SOX2 σε αστροκυττώματα grade II ως IV και τη συσχέτιση μεταξύ του προφίλ έκφρασης των συγκεκριμένων παραγόντων, με κλινικοπαθολογικά δεδομένα. Υλικό και μέθοδος. Η έκφραση των πρωτεϊνών ERβ, AIB1, TIF2, PELP1, EZH2 και SOX2 εκτιμήθηκε σε 86 περιπτώσεις αστροκυτταρικών όγκων χρησιμοποιώντας τη μέθοδο της ανοσοϊστοχημείας. Είκοσι grade II αστροκυττώματα, 22 grade III αναπλαστικά αστροκυττώματα και 46 grade IV πλειόμορφα γλοιοβλαστώματα (GBM) συμπεριλήφθησαν στη συγκεκριμένη μελέτη. Η μέθοδος με χρήση συστήματος ανίχνευσης EnVision (Envision, Dako, CA, USA) ή MACH4 Universal HRP-Polymer Detection (Biocare Medical, CA, USA) και πρωτογενή αντισώματα έναντι των ERβ (Biogenex, CA, USA), AIB1 (BD Biosciences, Ca, USA), TIF2 (BD Biosciences, Ca, USA), PELP-1/MNAR (Novus Biologicals, CO, USA) EZH2 (Novocastra, UK) και SOX2 (R&D Systems, Inc.) χρησιμοποιήθηκαν στην παρούσα μελέτη. Σε κάθε περιστατικό και για κάθε δείκτη εκτιμήθηκε το ποσοστό των καρκινικών κυττάρων που εμφάνιζαν θετική ανοσοχρώση. Αντιπροσωπευτικές περιοχές επιλέχθηκαν κατόπιν σάρωσης του πλακιδίου σε οπτικό πεδίο μικρής μεγέθυνσης (Χ100), ενώ η καταμέτρηση των θετικών κυττάρων πραγματοποιήθηκε σε μεγάλης μεγέθυνσης πεδίο (400X). Η στατιστική ανάλυση έγινε με τη χρήση του SPSS στατιστικού πακέτου (SPSS©, Release 17.0, Chicago, IL, USA). Τιμές p<0.05 θεωρήθηκαν ως στατιστικά σημαντικές. Αποτελέσματα. Σημαντική μείωση των επιπέδων του ERβ παρατηρήθηκε παράλληλα με την αύξηση του grade. Επιπλέον, η υψηλή ERβ έκφραση αναδείχθηκε ως ανεξάρτητος θετικός προγνωστικός παράγοντας της συνολικής επιβίωσης κατά την πολυπαραγοντική ανάλυση. Η έκφραση των AIB1, TIF2 και PELP1, δε συσχετίσθηκε με αυτή του ERβ, και ακολούθησε αντιστρόφως ανοδική τάση, παράλληλα με την αύξηση του grade. Η στατιστική ανάλυση περαιτέρω, ανέδειξε μία σημαντική αύξηση τόσο των επιπέδων EZH2 όσο και SOX2 στα grade III και IV σε σχέση με τα grade II αστροκυττώματα. Ισχυρή συσχέτιση παρατηρήθηκε ως προς την έκφραση των δύο δεικτών σε όλες τις κατά grade υποομάδες. Η Kaplan-Meier ανάλυση έδειξε ότι, η υψηλή EZH2 και SOX2 πρωτεϊνική έκφραση συνιστούν αρνητικό παράγοντα πρόγνωσης τόσο στο σύνολο των ασθενών όσο και κατόπιν διαστρωμάτωσης κατά grade. Τέλος, η πολυπαραγοντική Cox ανάλυση συνυπολογίζοντας την ηλικία, το φύλο, το grade και την έκφραση των δύο πρωτεϊνών έδειξε ότι μόνο η υψηλή EZH2 έκφραση μαζί με το υψηλό grade, αποτελούν ανεξάρτητους παράγοντες δυσμενούς πρόγνωσης. Συμπεράσματα. Οι παράγοντες ERβ, AIB1, TIF2 και PELP1 ενέχονται στους παθογενετικούς μηχανισμούς ανάπτυξης και εξέλιξης των αστροκυτταρικών όγκων, με τον ERβ να διαδραματίζει προστατευτικό ρόλο και τους AIB1, TIF2 και PELP1 να εμφανίζουν ογκο – προαγωγό δράση. Το ογκογενετικό δυναμικό των παραγόντων AIB1, TIF2 και PELP1 φαίνεται πως διαμεσολαβείται μέσω ανεξάρτητων του οιστρογονικού υποδοχέα μηχανισμών. Η έκφραση του ERβ, διαχωρίζοντας κλινικές εκβάσεις σε ασθενείς ιδίου grade, θα μπορούσε να αποτελέσει ένα χρήσιμο εργαλείο κατά τη λήψη εξατομικευμένων κλινικών αποφάσεων. Οι παράγοντες EZH2 και SOX2, θα μπορούσαν να χρησιμοποιηθούν ως εν δυνάμει δείκτες καρκινικών stem κυττάρων σε αστροκυτταρικούς όγκους, να βοηθήσουν τη βελτιστοποίηση τόσο διαγνωστικών όσο και προγνωστικών διαδικασιών στην κλινική πράξη, και να κατευθύνουν την ανάπτυξη εξατομικευμένων στρατηγικών θεραπείας. / Astrocytic tumors are the most common primary neoplasms of the central nervous system (CNS) and have traditionally been associated with disappointing clinical outcomes. The current challenge is to develop more efficacious and targeted therapeutic paradigms, exploiting the knowledge derived from the systems approach of understanding the complex networks underlying tumor formation and progression. Estrogen receptor beta (ERβ) and co-regulators of transcription AIB1, TIF2 and PELP1, are key components of complex cellular networks and integrate diverse signaling afferents with transcription programs controlling various physiological cellular processes and a variety of disease states including cancer. SOX2 and EZH2 represent crucial components of the reciprocal regulatory circuit that controls stemness. Elucidating the behavior of this particular network in cancer and its role in the formation of putative cancer stem cells is considered essential for the understanding of cancer as an adaptive complex system and subsequently allowing the discovery of more successful therapeutic designs. Purpose. In the context of the systems approach of comprehending tumorigenesis in astrocytomas, we sought to investigate the expression of ERβ and co – regulatory proteins AIB1, TIF1 and PELP1, as well as parallel expression of SOX2 and EZH2 in astrocytomas of various grades, and correlate the protein expression profiles with clinicopathological parameters and patients’ prognosis. Materials and methods. Expression of ERβ, AIB1, TIF2, PELP1, EZH2 and SOX2 was evaluated in 86 cases of astrocytic tumors, using Immunohistochemistry, on formalin-fixed paraffin-embedded tissue sections. Twenty grade II astrocytomas, 22 grade III anaplastic astrocytomas and 46 grade IV glioblastomas multiforme (GBM) were included in this study. Polymer based technique (Envision, Dako, CA, USA) or MACH4 Universal HRP-Polymer Detection (Biocare Medical, CA, USA) and primary antibodies against ERβ1 (Biogenex, CA, USA), AIB1 (BD Biosciences, Ca, USA), TIF2 (BD Biosciences, Ca, USA), PELP-1/MNAR (Novus Biologicals, CO, USA) EZH2 (Novocastra, UK) and SOX2 (R&D Systems, Inc.) were used. In each case, the percentage of cells exhibiting positive staining was determined. Representative areas were selected at low power (x100) magnification. Cell counts were performed at a 400X magnification. Data were analyzed using the SPSS statistical package (SPSS©, Release 17.0, Chicago, IL, USA). The level of significance was set at p-value <0.05. Results. ERβ levels were significantly decreased with the progression of tumors’ grade. High expression of ERβ was an independent favorable prognostic factor on multivariate analysis. Expression of AIB1, TIF2 and PELP1, was not correlated to ERβ expression and followed an opposite trend, with increasing levels in grade III and IV relative to grade II tumors. Univariate survival analysis revealed that high AIB1, TIF2 and PELP1 expression was associated with worse prognosis. Statistical analysis further revealed significantly higher expression of EZH2 and SOX2 in high grade III and IV astrocytomas, compared to low grade II astrocytomas. Strong correlation between EZH2 and SOX2 was also detected within all subgroups according to grade. Kaplan-Meier showed that EZH2 and SOX2 high expression was predictive of worse overall survival in the whole cohort as well as after subgroup analysis by grade. Finally, multivariate Cox analysis that included age, gender, grade, and expression of both proteins, revealed that high EZH2 together with higher grade were strong negative prognostic factors. Conclusions. ERβ, AIB1, TIF2 and PELP1 appear to play an important role in the pathogenesis of astrocytic tumors, with ERβ exhibiting a protective effect, whereas AIB1, TIF2 and PELP1 facilitate malignant progression. AIB1, TIF2 και PELP1 contribution in tumor progression is speculated to be achieved through ERβ independent pathways. Moreover, the expression status of ERβ, by distinguish patient subpopulations with different prognosis within the same grade, could be a useful tool accommodating personalized clinical decision-making. EZH2 and SOX2 may serve as potential cancer stem cell markers in astrocytomas and as such help optimizing diagnostic and prognostic assessments and devising novel individually tailored treatment strategies.
9

Análise imunocitoquímica e de expressão gênica de efeitos do bevacizumabe em explantes de retina de ratos lister e em linhagem celular de glia de Müller humana / Immunocytochemistry and gene expression effects of bevacizumab on retinal explants of rats lister and glial cell line of human Müller analysis

Krempel, Paloma Gava 09 June 2015 (has links)
INTRODUÇÃO: As doenças retinianas associadas à neovascularização, tais como a degeneração macular relacionada à idade e as retinopatias diabética e da prematuridade são as principais e mais importantes causas da cegueira em todo o mundo. Nos últimos anos, injeções intravítreas de fármacos com ação antiangiogênica, como o bevacizumabe (BVZ), têm sido de grande valia tanto em pacientes na fase adulta quanto nos recém-natos. Todavia, estudos experimentais in vitro e in vivo sugerem que essas drogas promovam efeitos adversos sobre alguns processos celulares, interferindo diretamente em mecanismos fisiológicos que mantém a homeostase do tecido retiniano, incluindo os mecanismos de proliferação, diferenciação e morte celular. OBJETIVO: investigar o efeito do BVZ nos processos de transcrição e tradução de marcadores da gliose: GFAP e vimentina, de morte celular, caspase-3 e beclina-1, e dos proteoglicanos relacionados à manutenção e desenvolvimento de tecido retiniano: neurocam, fosfacam e sindecam-3. MÉTODOS: Dois modelos experimentais foram usados nesse estudo: 1) linhagem celular de Müller de Glia humana adulta (MIO-M1), cultivada em meio de cultura D-MEM na presença e ausência de BVZ por 12 e 24 horas nas concentrações de 0,25 mg/mL e 0,50 mg/mL e 2) explantes de retinas de ratos 2 dias pós-nascidos submetidos à 0,50 mg/mL da droga por 48 horas. Durante este período foram mantidos a 5% de dióxido de carbono à temperatura de 37°C. A análise de proteínas foi realizada por imunocitohistoquímica e Western Blotting e a expressão de RNAm, pela reação em cadeia da polimerase em tempo real (PCR Real Time). Foi utilizado o Teste de ANOVA - fator único para a comparação entre os grupos controle e tratados com BVZ de um mesmo período (12h ou 24h) e o teste t de Student para a comparação entre as mesmas concentrações de 12h e 24h, e para a comparação entre os grupos controle e tratado com BVZ dos explantes (p < 0,05). RESULTADOS: Nas células MIO-M1, o BVZ, aumentou a expressão gênica e diminui a tradução de VEGF na concentração de 0,50 mg/mL em 24h comparado a 12h. Para o GFAP, houve um aumento da transcrição em 0,50 mg/mL em 24h comparado a 12h e aos outros grupos em 24h. Entretanto, houve diminuição da tradução para estes mesmos períodos e condições. Para a vimentina, houve aumento na transcrição em 0,50 mg/mL após 24h. Os achados de beclina-1 revelaram uma diminuição da transcrição e tradução em 0,25 mg/mL em 24h comparado a 12h. A transcrição entre os grupos do mesmo período aumentou nos grupos tratados com BVZ tanto em 12h quanto em 24h. A tradução da beclina-1 diminuiu em 0,25 mg/mL, mas aumentou em 0,50 mg/mL em 24h em relação à 12h. A comparação entre os grupos de 24h revelou aumento da tradução em 0,50 mg/mL. Para a caspase-3, houve diminuição da transcrição em 0,25 mg/mL e 0,50 mg/mL em 24h em relação a 12h e entre nos grupos tratados com BVZ em 24h. A tradução revelou um aumento em 0,50 mg/mL em 24h em relação a 12h. No fosfacam, houve diminuição da transcrição em 0,50 mg/mL em 24h comparado a 12h e entre os grupos tratados com BVZ e controles para 12h e 24h. A transcrição de neurocam diminuiu em 0,25 mg/mL e 0,50 mg/mL em 24h comparado a 12h e entre os grupos tratados com BVZ e controles em 12h e 24h. A tradução aumentou em 0,50 mg/mL em 24h em relação a 12h, mas diminuiu entre os grupos em 24h. Nos explantes, a transcrição e tradução de VEGF diminuiram no grupo tratado com BVZ após 48h. CONCLUSÃO: Nossos resultados relacionados às células MIO-M1 e ao explante de ratos, in vitro, nos permitem aventar o possível comprometimento ocasionado pela depleção do VEGF pelo BVZ na homeostase do tecido retiniano, in vivo, interferindo nas moléculas envolvidas na morte e diferenciação celular e na neuroproteção em indivíduos em fase adulta e recém-nato / Backgraound: Vasoproliferative retinal disorders such as age-related macular, degeneration, diabetic retinopathy and retinopathy of prematurity are major causes of blindness in the world. In recent years, intravitreal injections of drugs with antiangiogenic action, as bevacizumab, have been very useful for both patients in adulthood and in newborns. However, experimental studies, in vivo and in vitro, suggest that antiangiogenic drugs may promote side effects in cellular proceedings, interfering directly in physiological mechanisms of cellular proliferation, differentiation and death. POURPOSE: Investigate the bevacizumab effects in transcription and translation processes of gliosis, GFAP and vimentin, cellular death markers, caspase-3 and beclin-1, and proteoglycans involved in retinal tissue maintenance and development, neurocan, phosphacan and syndecan-3. METHODS: Two experimental models were used on this research: cellular lineage of adult and human Müller glial cell(MIO-M1) were cultivated on D-MEM medium with 0,25 and 0,50 mg/mL bevacizumab for 12 and 24 hours, and two days old rat retinal explants submitted to 0,50 mg/mL for 48 hours. During this period were stored in laboratory ovens at 5% carbon dioxide pressure and 37 °C average temperature. Molecular techniques were used to evaluate gene expression and protein content. Protein assessments were performed by immunocytochemistry and western blotting analysis, while Real Time PCR was used to measure mRNA content. ANOVA tests one factor were applied to compare the control and BVZ groups of the same period (12h or 24h) and t test from Student to compare the same conditions of 12h and 24h, and to compare the control and BVZ retinal explants groups (p<0.05). RESULTS: At MIO-M1 cells, BVZ increased the gene expression and reduced the translation of VEGF at concentration of 0.50 mg / mL in 24 hours compared to 12 hours. For GFAP, there was an increase of transcription at 0.50 mg / mL in 24 hours compared to 12 hours and to the other groups at 24 hours. However, there was a decrease in translation for these same periods and conditions. For vimentin, there was an increase in transcription at 0.50 mg / mL after 24 hours. The beclin-1 findings revealed a decrease of transcription and translation at 0.25 mg / ml compared at 24 h compared to 12h. Transcription among groups increased in BVZ treated groups at 12h and 24h. The translation of beclin-1 decreased at 0.25 mg / ml, but increased at 0.50 mg / mL at 24 hours compared to 12 hours. The comparison between the groups at 24h revealed an increased in translation at 0.50 mg / mL. For caspase-3, there was a decrease in transcription at 0.25 mg / ml and 0.50 mg / ml at 24 compared to 12 hours and among BVZ treated groups at 24h. Translation revealed an increase at 0.50 mg / mL at 24 hours compared to 12 hours. For fosfacam, there was a decreased in transcription at 0.50 mg / mL in 24 hours compared to 12 hours and among BVZ treated groups and controls at 12h and 24h. The transcription of neurocam decreased at 0.25 mg / ml and 0.50 mg / ml at 24 hours compared to 12 hours and among BVZ treated groups and controls at 12h and 24h. Translation increased at 0.50 mg / mL at 24 compared to 12 hours, but decreased among the groups at 24 hours. For explants, transcription and translation of VEGF decreased in the BVZ group treated after 48h. CONCLUSION: Our results related to the MIO-M1 cells and explants of rats,in vitro, allow us to suggest the possible impairment caused by depletion of VEGF by BVZ in the homeostasis of retinal tissue, in vivo, interfering in the molecules involved in cell death and cell differentiation and neuroprotection in individuals in adulthood and newborns
10

Análise imunocitoquímica e de expressão gênica de efeitos do bevacizumabe em explantes de retina de ratos lister e em linhagem celular de glia de Müller humana / Immunocytochemistry and gene expression effects of bevacizumab on retinal explants of rats lister and glial cell line of human Müller analysis

Paloma Gava Krempel 09 June 2015 (has links)
INTRODUÇÃO: As doenças retinianas associadas à neovascularização, tais como a degeneração macular relacionada à idade e as retinopatias diabética e da prematuridade são as principais e mais importantes causas da cegueira em todo o mundo. Nos últimos anos, injeções intravítreas de fármacos com ação antiangiogênica, como o bevacizumabe (BVZ), têm sido de grande valia tanto em pacientes na fase adulta quanto nos recém-natos. Todavia, estudos experimentais in vitro e in vivo sugerem que essas drogas promovam efeitos adversos sobre alguns processos celulares, interferindo diretamente em mecanismos fisiológicos que mantém a homeostase do tecido retiniano, incluindo os mecanismos de proliferação, diferenciação e morte celular. OBJETIVO: investigar o efeito do BVZ nos processos de transcrição e tradução de marcadores da gliose: GFAP e vimentina, de morte celular, caspase-3 e beclina-1, e dos proteoglicanos relacionados à manutenção e desenvolvimento de tecido retiniano: neurocam, fosfacam e sindecam-3. MÉTODOS: Dois modelos experimentais foram usados nesse estudo: 1) linhagem celular de Müller de Glia humana adulta (MIO-M1), cultivada em meio de cultura D-MEM na presença e ausência de BVZ por 12 e 24 horas nas concentrações de 0,25 mg/mL e 0,50 mg/mL e 2) explantes de retinas de ratos 2 dias pós-nascidos submetidos à 0,50 mg/mL da droga por 48 horas. Durante este período foram mantidos a 5% de dióxido de carbono à temperatura de 37°C. A análise de proteínas foi realizada por imunocitohistoquímica e Western Blotting e a expressão de RNAm, pela reação em cadeia da polimerase em tempo real (PCR Real Time). Foi utilizado o Teste de ANOVA - fator único para a comparação entre os grupos controle e tratados com BVZ de um mesmo período (12h ou 24h) e o teste t de Student para a comparação entre as mesmas concentrações de 12h e 24h, e para a comparação entre os grupos controle e tratado com BVZ dos explantes (p < 0,05). RESULTADOS: Nas células MIO-M1, o BVZ, aumentou a expressão gênica e diminui a tradução de VEGF na concentração de 0,50 mg/mL em 24h comparado a 12h. Para o GFAP, houve um aumento da transcrição em 0,50 mg/mL em 24h comparado a 12h e aos outros grupos em 24h. Entretanto, houve diminuição da tradução para estes mesmos períodos e condições. Para a vimentina, houve aumento na transcrição em 0,50 mg/mL após 24h. Os achados de beclina-1 revelaram uma diminuição da transcrição e tradução em 0,25 mg/mL em 24h comparado a 12h. A transcrição entre os grupos do mesmo período aumentou nos grupos tratados com BVZ tanto em 12h quanto em 24h. A tradução da beclina-1 diminuiu em 0,25 mg/mL, mas aumentou em 0,50 mg/mL em 24h em relação à 12h. A comparação entre os grupos de 24h revelou aumento da tradução em 0,50 mg/mL. Para a caspase-3, houve diminuição da transcrição em 0,25 mg/mL e 0,50 mg/mL em 24h em relação a 12h e entre nos grupos tratados com BVZ em 24h. A tradução revelou um aumento em 0,50 mg/mL em 24h em relação a 12h. No fosfacam, houve diminuição da transcrição em 0,50 mg/mL em 24h comparado a 12h e entre os grupos tratados com BVZ e controles para 12h e 24h. A transcrição de neurocam diminuiu em 0,25 mg/mL e 0,50 mg/mL em 24h comparado a 12h e entre os grupos tratados com BVZ e controles em 12h e 24h. A tradução aumentou em 0,50 mg/mL em 24h em relação a 12h, mas diminuiu entre os grupos em 24h. Nos explantes, a transcrição e tradução de VEGF diminuiram no grupo tratado com BVZ após 48h. CONCLUSÃO: Nossos resultados relacionados às células MIO-M1 e ao explante de ratos, in vitro, nos permitem aventar o possível comprometimento ocasionado pela depleção do VEGF pelo BVZ na homeostase do tecido retiniano, in vivo, interferindo nas moléculas envolvidas na morte e diferenciação celular e na neuroproteção em indivíduos em fase adulta e recém-nato / Backgraound: Vasoproliferative retinal disorders such as age-related macular, degeneration, diabetic retinopathy and retinopathy of prematurity are major causes of blindness in the world. In recent years, intravitreal injections of drugs with antiangiogenic action, as bevacizumab, have been very useful for both patients in adulthood and in newborns. However, experimental studies, in vivo and in vitro, suggest that antiangiogenic drugs may promote side effects in cellular proceedings, interfering directly in physiological mechanisms of cellular proliferation, differentiation and death. POURPOSE: Investigate the bevacizumab effects in transcription and translation processes of gliosis, GFAP and vimentin, cellular death markers, caspase-3 and beclin-1, and proteoglycans involved in retinal tissue maintenance and development, neurocan, phosphacan and syndecan-3. METHODS: Two experimental models were used on this research: cellular lineage of adult and human Müller glial cell(MIO-M1) were cultivated on D-MEM medium with 0,25 and 0,50 mg/mL bevacizumab for 12 and 24 hours, and two days old rat retinal explants submitted to 0,50 mg/mL for 48 hours. During this period were stored in laboratory ovens at 5% carbon dioxide pressure and 37 °C average temperature. Molecular techniques were used to evaluate gene expression and protein content. Protein assessments were performed by immunocytochemistry and western blotting analysis, while Real Time PCR was used to measure mRNA content. ANOVA tests one factor were applied to compare the control and BVZ groups of the same period (12h or 24h) and t test from Student to compare the same conditions of 12h and 24h, and to compare the control and BVZ retinal explants groups (p<0.05). RESULTS: At MIO-M1 cells, BVZ increased the gene expression and reduced the translation of VEGF at concentration of 0.50 mg / mL in 24 hours compared to 12 hours. For GFAP, there was an increase of transcription at 0.50 mg / mL in 24 hours compared to 12 hours and to the other groups at 24 hours. However, there was a decrease in translation for these same periods and conditions. For vimentin, there was an increase in transcription at 0.50 mg / mL after 24 hours. The beclin-1 findings revealed a decrease of transcription and translation at 0.25 mg / ml compared at 24 h compared to 12h. Transcription among groups increased in BVZ treated groups at 12h and 24h. The translation of beclin-1 decreased at 0.25 mg / ml, but increased at 0.50 mg / mL at 24 hours compared to 12 hours. The comparison between the groups at 24h revealed an increased in translation at 0.50 mg / mL. For caspase-3, there was a decrease in transcription at 0.25 mg / ml and 0.50 mg / ml at 24 compared to 12 hours and among BVZ treated groups at 24h. Translation revealed an increase at 0.50 mg / mL at 24 hours compared to 12 hours. For fosfacam, there was a decreased in transcription at 0.50 mg / mL in 24 hours compared to 12 hours and among BVZ treated groups and controls at 12h and 24h. The transcription of neurocam decreased at 0.25 mg / ml and 0.50 mg / ml at 24 hours compared to 12 hours and among BVZ treated groups and controls at 12h and 24h. Translation increased at 0.50 mg / mL at 24 compared to 12 hours, but decreased among the groups at 24 hours. For explants, transcription and translation of VEGF decreased in the BVZ group treated after 48h. CONCLUSION: Our results related to the MIO-M1 cells and explants of rats,in vitro, allow us to suggest the possible impairment caused by depletion of VEGF by BVZ in the homeostasis of retinal tissue, in vivo, interfering in the molecules involved in cell death and cell differentiation and neuroprotection in individuals in adulthood and newborns

Page generated in 0.2038 seconds