• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the effects of increased levels of O-GlcNAc protein modification on protein kinase C and Akt

Matthews, Jason Aaron 01 June 2006 (has links)
O-linked N-acetylglucosamine (O-GlcNAc) is an abundant and ubiquitous post-translational modification that has been shown to play a role in regulating a variety of intracellular processes. The pathway responsible for generating the O-GlcNAc modification, the hexosamine biosynthetic pathway (HBP), has also been shown to affect the activity and translocation of certain protein kinase C (PKC) isoforms. To investigate if the effects of HBP flux on PKC translocation observed by others is related to the O-GlcNAc modification, O-GlcNAc levels in human astroglial cells were elevated using four separate O-GlcNAc modulating agents followed by analysis of cytosol and membrane concentrations of PKC-epsilon, -alpha, -betaII, and -iota. Of the four PKC isoforms analyzed, PKC-epsilon showed a significant reduction in its membrane associated levels in response to all agents tested whereas PKC-alpha showed reductions in response to only two agents. Investigation of the mechanism for the reductions in membrane associated PKC-epsilon and -alpha indicate that the increased O-GlcNAc levels did not disrupt the activation of these isoforms or their ability to translocate to the plasma membrane. Furthermore, results indicate that these reductions are not due to a disruption in the Hsp70 mediated recycling of the isoforms. It was found; however, that increased O-GlcNAc levels resulted in increased degradation of PKC-epsilon suggesting that the decreases in membrane associated PKC-epsilon may be a result of increased phosphatase or protease activity. Additional studies revealed that decreases in membrane bound PKC-epsilon and PKC-alpha, both of which act as anti-apoptotic enzymes, correlated with an increase in poly-(ADP-ribose) polymerase (PARP) cleavage -- a well characterized hallmark of apoptosis. In addition to PKC, the effects of increased O-GlcNAc levels on a related kinase, Akt, were also examined. Initial investigation of the effects of increased O-GlcNAc modification of Akt activation using glucosamine or streptozotocin revealed a relatively large, short-term increase in Akt phosphorylation in response to these treatments. However, further analysis with other O-GlcNAc modulators indicated that this activation was not related to O-GlcNAc protein modification. Furthermore, this activation does not appear to be related to any hyperosmotic effects associated with the treatment conditions, nor does it appear to be related to oxidative stress. Therefore, further investigation is needed to characterize the novel pathway responsible for Akt activation following glucosamine or streptozotocin treatment.
2

Contribution à l’étude des mécanismes de la glioprotection anti-oxydante et anti-inflammatoire sur des modèles in vitro et in vivo de neurodégénérescences et d'ischémie cérébrale : implication potentielle des globines endogènes du système nerveux central / Contribution to the study of the mechanisms of anti-oxidant and anti-inflammatory glioprotection on in vitro and in vivo models of neurodegeneration and cerebral ischemia : potential involvement of the endogenous globins of the system central nervous system

Amri, Fatma 12 December 2016 (has links)
Le stress oxydatif joue un rôle majeur dans la mort des cellules neuronales dans diverses conditions neuropathologiques. Cependant, les astrocytes réactifs, en produisant des facteurs neuroprotecteurs et antioxydants, sont capables de protéger les neurones contre le stress oxydatif. De ce fait, la protection des cellules gliales contre les facteurs nocifs, s’avère indispensable pour prévenir les dommages des cellules nerveuses. Les globines du cerveau, en particulier, la neuroglobine (Ngb) et l’hémoglobine (Hb), exprimées dans les cellules nerveuses, jouent un rôle important dans le métabolisme de l’oxygène. Récemment, il a été démontré, que ces protéines exercent des effets neuroprotecteurs dans les modèles expérimentaux de maladies neurodégénératives. Cependant, aucun effet glioprotecteur n’a été rapporté. Les objectifs de ce travail de thèse sont, de mettre en évidence les effets protecteurs de l’Hb et la Ngb dans les astrocytes en culture en présence d’un stress oxydant, et d’élucider les mécanismes intracellulaires mis en jeu. Nous avons démontré que l’Hb et la Ngb sont capables de promouvoir la survie des astrocytes en condition de stress oxydatif, et ce en réduisant significativement la surproduction des ROS, la surexpression des gènes pro-inflammatoires (IL-6, IL-33, iNOS), le dysfonctionnement mitochondrial et la stimulation de l’activité de la caspase-3/7. Nous avons montré aussi que les effets anti-apoptotiques impliquent l’activation des voies de signalisation ERK-MAPK. En outre, nous avons vérifié les effets glioprotecteurs sur un modèle animal de stress oxydatif chronique, les souris KO TP53INP1, ainsi que sur un modèle animal d’hypoxie. / Oxidative stress plays a major role in the death of neuronal cells under various neuropathological conditions. However, reactive astrocytes, by producing neuroprotective and antioxidant factors, are able to protect neurons against oxidative stress. Therefore, protecting glial cells from harmful factors is essential to prevent nerve cell damage. Brain globins, in particular, neuroglobin (Ngb) and hemoglobin (Hb), expressed in neurons and glial cells, play an important role in the metabolism of oxygen. Recently, it has been demonstrated that these proteins exert neuroprotective effects in experimental models of neurodegenerative diseases. However, no glioprotective effect has been reported. The objectives of this thesis work are to demonstrate the protective effects of Hb and Ngb in cultured astrocytes in the presence of oxidative stress and to elucidate the intracellular mechanisms involved. We have demonstrated That Hb and Ngb are able to promote the survival of astrocytes under oxidative stress conditions by significantly reducing over-production of ROS, overexpression of pro-inflammatory genes (IL-6, IL-33, iNOS) Mitochondrial dysfunction and stimulation of caspase-3/7 activity. We have also shown that anti-apoptotic effects involve the activation of ERK-MAPK signaling pathways. In addition, we verified the glioprotective effects on an animal model of chronic oxidative stress, KO mice TP53INP1, as well as on an animal model of hypoxia.
3

Roles of astroglial cannabinoid type 1 receptors (CB1) in memory and synaptic plasticity / Rôles du récepteur aux cannabinoïdes de type 1 des astrocytes dans la mémoire et la plasticité synaptique

Robin, Laurie 30 November 2018 (has links)
Le système endocannabinoïde est un important modulateur des fonctions physiologiques. Il est composé des récepteurs aux cannabinoïdes, de ses ligands lipides endogènes (les endocannabinoïdes) et de la machinerie enzymatique pour leur synthèse et leur dégradation. Les récepteurs aux cannabinoïdes de type 1 (CB1) sont exprimés dans différents types cellulaires dans le cerveau et sont connus pour être impliqués dans les processus mnésiques. Les endocannabinoïdes sont mobilisés dépendamment de l’activité notamment dans les régions cérébrales impliquées dans la mémoire telle que l’hippocampe. Dans cette région, les récepteurs CB1 sont exprimés au niveau des terminaisons neuronales présynaptiques où leur stimulation inhibe la libération de neurotransmetteurs, modulant ainsi différentes formes d’activité synaptique. Outre leur expression sur les neurones, les récepteurs CB1 sont également exprimés par les astrocytes. Avec l’élément pré- et post-synaptique, les astrocytes font partis de la « synapse tripartite » où ils participent à la plasticité synaptique et les processus mnésiques associés. De manière intéressante, la stimulation des récepteurs CB1 astrocytaires facilite la transmission glutamatergique dans l’hippocampe. Dans cette région, les astrocytes régulent l’activité des N-methyl-Daspartate receptors (NMDARs) à travers le contrôle des niveaux synaptiques de leur co-agoniste, la D-serine, modulant ainsi la plasticité synaptique à long terme. Cependant, le mécanisme entrainant la libération de D-serine par les astrocytes n’est pas identifié. De manière intéressante, notre laboratoire a montré que les effets délétères des cannabinoïdes exogènes sur la mémoire de travail spatial sont médiés par les récepteurs CB1 astrocytaires à travers un mécanisme dépendant des NMDARs dans l’hippocampe. Cependant, le rôle physiologique des récepteurs CB1 astrocytaires restent méconnus. Une des formes de mémoire impliquant le récepteurs CB1 est la mémoire de reconnaissance d’objet (NOR). La stimulation exogène des récepteurs CB1 hippocampique inhibe la consolidation de la NOR mais la délétion constitutive des récepteurs CB1 n’affecte pas la NOR, suggérant que la signalisation des récepteurs CB1 endogènes n’est pas nécessaire. Cependant, de récentes études soulignent que la délétion globale du gène CB1 pourrait masquer le rôle des récepteurs CB1 des différents types cellulaires. Ceci indique la nécessité de nouveaux outils plus sophistiqués afin de totalement comprendre le rôle physiologique du système endocannabinoïde dans des comportements complexes. Dans cette étude, nous avons étudié le rôle physiologique des récepteurs CB1 astrocytaires dans la formation de la NOR et la plasticité synaptique. En utilisant une combinaison d’approches génétiques, comportementales, électro-physiologiques, d’imagerie et de biochimie, nous avons montré que l’activation endogène des récepteurs CB1 astrocytaires est nécessaire pour la consolidation de la NOR à long terme, et ceci à travers un mécanisme impliquant l’apport en D-sérine, afin de stimuler l’activité des NMDARs synaptiques de l’hippocampe dorsal. Cette étude révèle un mécanisme inattendu à la base de la libération de D-sérine, entrainant l’activité des NMDARs et la formation de la mémoire à long terme. / The endocannabinoid system is an important modulator of physiological functions. It is composed of cannabinoid receptors, their endogenous lipid ligands (the endocannabinoids) and the enzymatic machinery for endocannabinoid synthesis and degradation. The type-1 cannabinoid receptors (CB1) are expressed in different cell types of the brain and are known to be involved in memory processes. Endocannabinoids are mobilized in an activity-dependent manner in brain areas involved in the modulation of memory such as the hippocampus. In this brain region, CB1 receptors are mainly expressed at neuronal pre-synaptic terminals where their stimulation inhibits the release of neurotransmitters, thereby modulating several forms of synaptic activity. Besides their expression in neurons, CB1 receptors are also expressed in astrocytes. Along with the pre- and post-synaptic neurons, astrocytes are part of the “tripartite synapse”, where they participate in synaptic plasticity and associated memory processes. Interestingly, modulation of astroglial CB1 receptors has been proposed to facilitate glutamatergic transmission in the hippocampus. In this brain area, astrocytes regulate the activity of N-methyl-D-aspartate receptors (NMDARs) through the control of the synaptic levels of their co-agonist D-serine, thereby mediating long-term synaptic plasticity. However, the mechanisms inducing D-serine release by astrocytes are still not identified. Interestingly, our laboratory showed that the negative effect of exogenous cannabinoids on spatial working memory is mediated by astroglial CB1 receptors through a NMDAR-dependent mechanism in the hippocampus, but the physiological role of astroglial CB1 remains unknown. One of the forms of memory involving CB1 receptors is novel object recognition (NOR) memory. The exogenous stimulation of hippocampal CB1 receptors inhibits the consolidation of long-term NOR formation. Constitutive global deletion of CB1 receptors in mice leaves NOR memory intact, suggesting that endogenous CB1 receptor signaling is not necessary for long-term NOR. However, recent studies pointed-out that, likely due to compensatory mechanisms, the global deletion of the CB1 gene might mask cell type-specific roles of CB1 receptors, indicating that more sophisticated tools are required to fully understand the physiological roles of the endocannabinoid system in complex behavioral functions. In this work, we investigated the physiological role of the astroglial CB1 receptors on NOR memory formation and synaptic plasticity. By using a combination of genetic, behavioral, electrophysiological, imaging and biochemical techniques, we showed that endogenous activation of astroglial CB1 receptors is necessary for the consolidation of long-term NOR memory, through a mechanism involving the supply of D-serine to enhance synaptic NMDARs-dependent plasticity in the dorsal hippocampus. This study uncovers an unforeseen mechanism underlying D-serine release, triggering NMDARs activity and long-term memory formation.ory.
4

Chronic inflammation surrounding intra-cortical electrodes is correlated with a local, neurodegenerative state

McConnell, George Charles 18 November 2008 (has links)
Thanks to pioneering scientists and clinicians, prosthetic devices that are controlled by intra-cortical electrodes recording one's 'thoughts' are a reality today, and no longer merely in the realm of science fiction. However, widespread clinical use of implanted electrodes is hampered by a lack of reliability in chronic recordings, independent of the type of electrodes used. The dominant hypothesis has been that astroglial scar electrically impedes the electrodes. However, recent studies suggest that the impedance changes associated with the astroglial scar are not high enough to interfere significantly impair neural recordings. Furthermore, there is a time delay between when scar electrically stabilizes and when neural recordings fail (typically >1 month lag), suggesting that scar, per se, does not cause chronic recording unreliability. In this study, an alternative hypothesis was tested in a rat model, namely, that chronic inflammation surrounding microelectrodes causes a local neurodegenerative state. Chronic inflammation was varied in three ways: 1) stab wound control, 2) age-matched control, and 3) inter-shank spacing of a multishank electrode. The results of this study suggest that chronic inflammation, as indicated by activated microglia and reactive astrocytes, is correlated with local neurodegeneration, marked by neuron cell death and dendritic loss. Surprisingly, axonal pathology in the form of hyperphosphorylation of the protein Tau (the hallmark of many tauopathies, including Alzheimer's Disease) was also observed in the immediate vicinity of microelectrodes implanted for 16 weeks. Additionally, work is presented on a fast, non-invasive method to monitor the astrocytic response to intra-cortical electrodes using electrical impedance spectroscopy. This work provides a non-invasive monitoring tool for inflammation, albeit an indirect one, and fills a gap which has slowed the development of strategies to control the inflammatory tissue response surrounding microelectrodes and thereby improve the reliability of chronic neural recordings. The results of these experiments have significance for the field of neuroengineering, because a more accurate understanding of why recordings fail is integral to engineering reliable solutions for integrating brain tissue with microelectrode arrays.

Page generated in 0.0684 seconds