11 |
Radon-induced surface contaminations in neutrinoless double beta decay and dark matter experimentsPattavina, Luca 17 January 2011 (has links) (PDF)
In experiments looking for rare events, like neutrinoless double beta decay (DBD0v) and dark matter search (DM), one of the main issues is to increase the experimental sensitivity through the material selection and production. In the specific the background contribution coming from the materials used for the detector realization has to be minimized. Moreover the net reduction of the background produced by the bulk part of the apparatus has raised concerns about the background contribution coming from the surfaces. Many procedures and techniques were developed during the last years in order to remove and to minimize the presence of possible contaminants on detector surfaces. To succeed in this strategy a big effort was put in defining all possible mechanisms that lead to surface contaminations, as well as specific cleaning procedures, which are able to reduce and control the surface radioactivity. The presence in air and gases of possible radioactive elements that can stick on the detector surfaces can lead to a recontamination process that will vanish all the applied cleaning procedures. Here is presented and analyzed the contribution to the background of rare events experiments like CUORE (DBD0v) and EDELWEISS (DM) produced by an exposure of their detector components to a big activity of 222Rn, radioactive daughter isotope from the 238U chain.
|
12 |
Etude dynamique et observationnelle des astéroïdes de la ceinture principaleSouami, Damya 07 December 2012 (has links) (PDF)
Les astéroïdes sont les vestiges de notre système solaire primitif. Inconnus il y a encore 210 ans, leur découverte a changé notre vision du monde. Je me suis proposée dans cette thèse d'étudier les aspects tant dynamiques qu'observationnels relatifs à ces objets. Je prends le temps d'aborder le contexte historique de leur découverte ainsi que les conséquences qui y font suite. Ceci m'amène à définir le plan de référence le mieux adapté à leur étude. Laplace, il y a deux siècles de cela, s'était également intéressé à ce plan pour l'étude des planètes. Mon travail porte sur la caractérisation de ce plan, dit "invariable", mais aussi sur l'évaluation de l'effet des "plus gros petits corps" du système solaire et à la contribution de chaque planète sur son orientation. Dans la partie dynamique, je me cantonne à l'étude des astéroïdes de la ceinture principale. Je me penche sur les différentes distributions de ces populations, aujourd'hui considérées comme laboratoires grandeur nature permettant de tester théories et modèles dynamiques. Je m'intéresse à la distribution de ces populations en terme de plans orbitaux. Je m'intéresse à un autre type de distribution que sont les familles d'astéroïdes, i.e astéroïdes provenant d'un même corps parent. En particulier, j'étudie la dynamique à long terme des membres de la famille de l'astéroïde (4) Vesta. J'inclue à cet égard les effets relativistes ainsi que l'effet Yarkowsky, par essence non gravitationnel. Enfin dans la partie observationnelle, je m'intéresse à deux méthodes de détections des astéroïdes, l'une à l'oeil nu, l'autre automatisée. Enfin, je les applique aux données, du télescope SUBARU de 8,2m, dans le cadre du programme SMBAS-III (Sub-km Main Belt Asteroid Survey). En conclusion, je montre comment cette thèse m'a permis d'aborder sous différents aspects la population des astéroïdes.
|
13 |
Liens entre le formation des nuages mol\éculaires et des étoiles massives: Une étude multi-traceurs et multi-échellesNguyen Luong, Quang 24 January 2012 (has links) (PDF)
La formation stellaire a toujours été un des principal domaine de l'astronomie depuis sa naissance. Des processus physiques complexes à différentes échelles (depuis des échelles subparsec jusqu'à des centaines de parsecs) impactent la formation stellaire et font de son étude un sujet compliqué mais intéressant. Le concept basique du gaz interstellaire et de la poussière qui s'effondre une fois que la gravité dépasse la pression pour former des étoiles a été développé par Sir James Jeans en 1928 et par la suite confirmé observationnellement par de nombreux observateurs (e.g. Ambartsumian 1954). Durant les derniers siècles, le progrès de la compréhension de la physique fondamentale gouvernant la formation stellaire a été fait grâce à des observations et des simulations, en particulier avec l'avènement d'observations dans l'infrarouge et le millimétrique d'une part, et des gros supercalculateurs d'autre part. Un schéma unificateur de formation stellaire à vu le jour, statuant que les nuages moléculaires se forment depuis de larges structures de gaz atomique \hi qui se condensent, se fragmentent et forment du gaz moléculaire et de forte densité de poussière. Ils évoluent et forment des structures encore plus dense grâce à d'une part un effondrement gravitationnel et peut être aussi par le biais de flots convergents. En continuant de s'effondrer, ces structures vont former les corps denses qui fourniront la matière et les conditions initiales pour former une seule étoile ou un système multiple d'étoiles. Malheureusement, le détail de nombreux de ces processus n'est pas complètement compris. Aux échelles protostellaires, les questions restantes incluent le processus de la formation protoplanetaire, les mécanismes de mise en place des flots sortants, l'évolution chimique, pour n'en nommer que quelques unes. A des échelles beaucoup plus grandes, i.e. l'échelle des nuages moléculaires, nous ne comprenons pas encore comment les amas étoiles se forment, l'impact des nuages moléculaires sur la formation d'étoiles, la connection entre poussière, gaz et formation d'étoiles, par exemple. Au cours de cette thèse, j'ai pris pour objectif plusieurs problèmes : quel est le lien entre gaz, masse de poussière et taux de formation stellaire (stellar formation rate, ou SFR en anglais). Comment ce lien change entre des environnements galactiques et extragalactiques ? Est-ce que les nuages moléculaires et les étoiles se forment au travers du mécanisme dynamique de flots convergents ? Pour investiguer ces questions, j'ai étudié le contenu du gaz moléculaire et l'activité de formation stellaire de deux nuages moléculaires à différentes échelles spatiales : W43 avec un diamètre de FWHM de $\sim$ 100 pc et G035.39-00.33 avec un diamètre de FWHM de $\sim$ 10 pc , en utilisant différents traceurs de gaz et de poussière. Parmi eux, j'ai utilisé le \hi pour tracer le gaz atomique, CO pour tracer le gaz moléculaire, l'infrarouge lointain et le proche infrarouge pour tracer les activités de formation stellaires, et l'émission de lignes SiO pour tracer les chocs. Pour caractériser le complexe moléculaire de W43 nous avons utilisé un grand ensemble de données du continuum et des lignes moléculaires de traçage extrait de large survey galactique tels que ATLASGAL, GLIMPSE, VGPS et GRS (voir le chapitre 2 ou Nguyen Luong et al. 2011b). Le complexe W43 est remarquablement massif ($M_{total}$ $\sim$ 7.1 $\times 10^6 M_{\odot}$ sur une échelle spatiale de $\sim $140 pc) et a une très large distribution de vitesse de $\sim 22~km.s^{-1}$. Il est à une distance de $\sim$ 6 kpc du soleil, au point de rencontre entre le bras du centaure et de la barre galactique. Nous avons aussi trouvé que W43 a la plus grande concentration de "\textit{clumps}" massifs ($M_{clumps}$ $\sim$ 8.4 $\times 10^5 M_{\odot}$, 12\%), et contient quelques uns des plus denses corps du plan galactique (W43-MM1, W43-MM2 avec $n_{H_2}\sim 8 \times 10^4$ et $4\times 10^8 ~cm^{-3}$~respectivement). L'activité particulière de W43 suggère qu'il s'y passe une petite flambée d'étoiles ($SFR\sim 0.01~M_{\odot}~yr^{-1} $il y a 1 million d'années et $0.1 M_{\odot}yr^{-1}$ dans un futur proche). W43 est entourée par une enveloppe de gaz atomique de large diamètre ($\sim$290 pc), qui peut être la rémanente du gaz $H_I$ ayant formé le nuage moléculaire en premier lieu. Ces caractéristiques sont en accord avec l'appartenance de W43 à la région parfois appelée "anneau moléculaire" qui est connue pour être particulièrement riche en terme de nuages moléculaires et d'activités de formation stellaire. Voir Nguyen Luong et al. (2011b) pour détails. De plus, nous avons effectué, à travers l'ensemble du complexe W43, un nouveau survey avec le 30m de l'IRAM, pour observer les lignes moléculaires $^{13}CO~2-1$ et $C^{18}O~2-1$, les lignes moléculaires traçant le gaz dense telles que $HCO^+$, $N_2H^+$ à travers les sous-régions denses de W43 et un survey à 3~mm de largeur de bande de 8~GHz de W43-Main (voir le chapitre 4). Les résultats initiaux révèlent que les \textit{ridges} W43-MM1 et W43-MM2 subissent un effondrement global supersonic ($2 ~km.s^{-1}$), sur une échelle de quelques parsec. Cela a été mis à jour grâce à la comparaison et la modélisation des lignes d'émission des traceurs de l'optiquement épais tels que $H^{13}CO^+2-1, 1-0$. De l'émission étendue SiO 2-1 est aussi détectée à travers W43-Main, ce qui ne coïncide avec aucune signature de formation stellaire. Avec son lancement réussi, le satellite Herschel nous offre une nouvelle fenêtre d'observation pour l'étude des parties froides des nuages moléculaires, i.e. l'endroit où les étoiles se forment. Nous avons effectué un recensement des populations prestellaires/protostellaires et dérivé le taux de formation stellaire (SFR) pour le nuage W43. Un premier regard indique que W43 formera des étoiles avec efficacité dans le futur (voir section 5.3). Dans le chapitre 3, nous avons utilisé les données Herschel, Spitzer et ATLASGAL pour montrer que le filament IRDC G035.39-00.33 est froid (13-16~K) et dense ($n_{H_2}$ jusqu'à $9 \times 10^{22} cm^{-2}$), le qualifiant alors de "ridge". Ce ridge contient un total de 28 corps denses (FWHM$\sim$0.15 pc), parmi lesquels 13 corps denses massifs (MDCs) avec des masses allant de 20 à 50 $M_{\odot}$ et des densités entre $2-20\times10^5 cm^{-3}$. Les étoiles de masses moyennes jusqu'aux étoiles massives se forment potentiellement dans ces 13 MDCs. Étant donné leur concentration dans le filament IRDC G053.39-00.33, ils participent peut être à une petite flambée de l'activité de formation stellaire avec une SFE (efficience de formation stellaire) $\sim 15\%$, SFR$\sim 300 M_{\odot}~Myr^{-1}$, et $\sum_{SFR}\sim 40 ~M_{\odot} ~yr^{-1}~kpc^{-2}$(Nguyen Luong et al., 2011a). Le lien entre gaz et formation stellaire est évident. Schmidt (1959) fût le premier à énoncer qu'ils sont connectés via une relation entre densité de gaz et SFR : $\sum_{SFR}=A\sum^N_{gaz}$. Comme mentionné dans la section 1.3, cette relation empirique varie énormément en fonction de la nature de l'environnement, de la densité de gaz et des traceurs de formation stellaire que l'on utilise. Le diagramme densité de gaz vs SFR peut être utilisé pour distinguer les galaxies où à lieu une flambée d'étoiles des galaxies où la formation stellaire est normale (e.g. Daddi et al. 2010). Nous allons plus loin en proposant qu'il eut être utilisé pour faire la distinction entre nuage moléculaire où à lieu une flambée d'étoiles et nuage moléculaire formant des étoiles de façon normal . Les relations densité de gaz - SFR pour W43 et IRDC G035.39-00.33 furent comparées avec celles dérivées pour des galaxies externes (Kennicutt, 1998) et celles dérivées des régions de hautes densités formant des étoiles (Heiderman et al. 2010), voir les sections 2.3 et 3.4.2. Il ressort que W43 et IRDC G035.39-00.33 reposent dans le quadrant "flambée d'étoiles" cela dû au fait qu'elles forment des étoiles, et spécialement des étoiles massives, avec beaucoup d'efficacité. Ces deux régions méritent d'être investies plus avant puisqu'elles pourraient représenter un modèle miniature des processus physiques jouant dans les galaxies où ont lieu des flambées d'étoiles. Trouver plus d'exemples de flambée d'étoiles dans la voie lactée est nécessaire pour avoir une vue plus complète. Dans le diagramme densité de gaz - SFR, le complexe moléculaire W43 dans son entier se place entre les zones des galaxies spirales normales et les galaxies où ont lieu des flambées d'étoiles, probablement due au fait que c'est une région formant des étoiles massives, et ainsi traçant la même population stellaire que les mesures extragalactiques. D'un autre coté, les SFRs de IRDC G035.39-00.33 et W43-Main sont plusieurs ordre de grandeur au dessus de celles des galaxies, avec les mêmes densités de gaz (voir Fig. 2.7). Cette divergence est probablement crée par les différentes régions prises en compte dans cette étude. Une comparaison directe entre les relations galactiques et extragalactiques devraient en conséquence être précautionneuse. Cette étude montre aussi que l'intégralité des régions formant des étoiles massives, W43 par exemple, peuvent potentiellement être utilisées pour déduire les SFRs des galaxies. De plus, les régions formant des étoiles massives jouent probablement un rôle substantiel sur la dynamique à grandes échelles des galaxies, ce qui fût proposé pour être l'origine des relations densité de gaz - SFR pour les galaxies (Kennicut, 1998). La théorie des flots convergents est une des théorie prédominante pour expliquer la formation des nuages moléculaires et des étoiles, en particulier celles de grandes masses (Heitsch \& Hartmann, 2008). W43-Main et IRDC G035.39-00.33 forment des étoiles de grandes masses de manière efficace (voir chapitre 2 et 3). Ces régions montrent aussi des émissions étendues de SiO qui s'étendent jusqu'à l'échelle du parsec, sans être corrélées avec des protoétoiles proches. Des chocs provenant de flots sortant sont donc très peu probable pour expliquer ces émissions. Néanmoins, les observations traçant les hautes densités à travers W43-Main montrent qu'elle est en effondrement à de plus grandes échelles que celles des chocs. Ce fait pourrait suggérer que les émissions de SiO viennent de chocs à faibles vitesses à l'interface de collision crées par l'effondrement global. On s'attend à ce que ces chocs soient crées à ces fronts de collision, provoquant une élévation des instabilités dynamique et thermique, menant à une rapide fragmentation du nuage moléculaire et à la formation de corps denses massifs (Heitsch et al., 2008). Les conditions physique dans les modèles de flots convergents (T$\sim$20-100~K, v$\sim$1-10 $km.s^{-1}$) sont suffisantes pour générer des chocs C, mais pas des chocs J. Avec des flots convergents, on s'attend à ce que ces chocs soient largement répandus sur quelques parsecs, vu que la collision à virtuellement lieu partout dans le complexe (des centaines de parsecs). Sur une échelle bien plus large, différents filaments $H_I$ de W43 semblent converger avec un gradient de vitesse vers ces régions de chocs. Toutes ces structures sont baignées dans une grande enveloppe de $H_I$ (diamètre de 290 pc) qui peut être une rémanente du gaz $H_I$ tombé sur W43 pour former le gaz moléculaire. La position particulière de W43, à la jonction entre le bras du centaure et de la barre galactique, implique qu'il devrait subir une forte résonance donnant au gaz un fort moment cinétique pour s'écouler et se heurter violemment. De plus, dans d'autres régions de formation stellaire massive, bien qu'un peu plus faible, des signatures similaires de flots convergents ont étés observées (DR21, Schneider et al. 2010 ; Csengeri et al. 2011). Une conclusion ferme stipulant que les étoiles massives devraient se former d'une façon très dynamique est encore prématurée, mais les études de W43 et d'autres régions, semblent favoriser ce scénario. \\ Localisé à cette position avec des masse et densité extrêmes, et une anormale dispersion de vitesse, il est intéressant d'éclaircir pour W43 le rôle des flots convergents sur la formation des nuages moléculaires et des étoiles. Nous avons construit un grand catalogue contenant à la fois des données de continuum et de lignes moléculaires à travers cette région. Une analyse initiale a visé à étudier sa structure détaillée et sa cinématique. L'étude de sa chimie vient de commencer. Concernant les grandes échelles, nous sommes capable de caractériser les flots grandes échelles de $H_I$ qui forment les nuages moléculaires de W43 en utilisant les cartes de lignes spectrales de $H_I$ provenant des données VGPS. Les diagnostics des flots convergents sont approfondis en utilisant les données CO pour tracer les nuages de basse densité (Motte et al. en prép., Carlhoff et al. en prép.). Ces deux études sont complémentaires en ce qui concerne la cinématique et la dynamique des flots grandes échelles, et peuvent être couplées avec l'étude des activités de formation stellaire en utilisant les données \textit{Herschel} et \textit{Spitzer} pour former une vue cohérente depuis le gaz atomique diffus jusqu'aux clumps les plus denses formant des étoiles. Une recherche plus poussée aux petites échelles et elle aussi nécessaire. Dans le scénario des flots convergents, il semble que les filaments/ridges jouent un rôle majeur en accrétant de la masse sur les corps denses par des processus dynamiques. En prenant avantage des interféromètres existants, tels que IRAM PdBI, SMA, CARMA, nous étudions la cinématique des filaments/ridges en relation avec les corps formant des étoiles, à des résolutions de quelques arcsecondes. Avec l'arrivée prochaine d'ALMA, une nouvelle porte s'ouvre pour permettre la compréhension de la physique et de la chimie des corps et des filaments à des résolutions allant en dessous de l'arcseconde.
|
14 |
Liens entre le formation des nuages mol\éculaires et des étoiles massives: Une étude multi-traceurs et multi-échellesNguyen Luong, Quang 24 January 2012 (has links) (PDF)
La formation stellaire a toujours été un des principal domaine de l'astronomie depuis sa naissance. Des processus physiques complexes à différentes échelles (depuis des échelles subparsec jusqu'à des centaines de parsecs) impactent la formation stellaire et font de son étude un sujet compliqué mais intéressant. Le concept basique du gaz interstellaire et de la poussière qui s'effondre une fois que la gravité dépasse la pression pour former des étoiles a été développé par Sir James Jeans en 1928 et par la suite confirmé observationnellement par de nombreux observateurs (e.g. Ambartsumian 1954). Durant les derniers siècles, le progrès de la compréhension de la physique fondamentale gouvernant la formation stellaire a été fait grâce à des observations et des simulations, en particulier avec l'avènement d'observations dans l'infrarouge et le millimétrique d'une part, et des gros supercalculateurs d'autre part. Un schéma unificateur de formation stellaire à vu le jour, statuant que les nuages moléculaires se forment depuis de larges structures de gaz atomique \hi qui se condensent, se fragmentent et forment du gaz moléculaire et de forte densité de poussière. Ils évoluent et forment des structures encore plus dense grâce à d'une part un effondrement gravitationnel et peut être aussi par le biais de flots convergents. En continuant de s'effondrer, ces structures vont former les corps denses qui fourniront la matière et les conditions initiales pour former une seule étoile ou un système multiple d'étoiles. Malheureusement, le détail de nombreux de ces processus n'est pas complètement compris. Aux échelles protostellaires, les questions restantes incluent le processus de la formation protoplanetaire, les mécanismes de mise en place des flots sortants, l'évolution chimique, pour n'en nommer que quelques unes. A des échelles beaucoup plus grandes, i.e. l'échelle des nuages moléculaires, nous ne comprenons pas encore comment les amas étoiles se forment, l'impact des nuages moléculaires sur la formation d'étoiles, la connection entre poussière, gaz et formation d'étoiles, par exemple. Au cours de cette thèse, j'ai pris pour objectif plusieurs problèmes : quel est le lien entre gaz, masse de poussière et taux de formation stellaire (stellar formation rate, ou SFR en anglais). Comment ce lien change entre des environnements galactiques et extragalactiques ? Est-ce que les nuages moléculaires et les étoiles se forment au travers du mécanisme dynamique de flots convergents ? Pour investiguer ces questions, j'ai étudié le contenu du gaz moléculaire et l'activité de formation stellaire de deux nuages moléculaires à différentes échelles spatiales : W43 avec un diamètre de FWHM de $\sim$ 100 pc et G035.39-00.33 avec un diamètre de FWHM de $\sim$ 10 pc , en utilisant différents traceurs de gaz et de poussière. Parmi eux, j'ai utilisé le \hi pour tracer le gaz atomique, CO pour tracer le gaz moléculaire, l'infrarouge lointain et le proche infrarouge pour tracer les activités de formation stellaires, et l'émission de lignes SiO pour tracer les chocs. Pour caractériser le complexe moléculaire de W43 nous avons utilisé un grand ensemble de données du continuum et des lignes moléculaires de traçage extrait de large survey galactique tels que ATLASGAL, GLIMPSE, VGPS et GRS (voir le chapitre 2 ou Nguyen Luong et al. 2011b). Le complexe W43 est remarquablement massif ($M_{total}$ $\sim$ 7.1 $\times 10^6 M_{\odot}$ sur une échelle spatiale de $\sim $140 pc) et a une très large distribution de vitesse de $\sim 22~km.s^{-1}$. Il est à une distance de $\sim$ 6 kpc du soleil, au point de rencontre entre le bras du centaure et de la barre galactique. Nous avons aussi trouvé que W43 a la plus grande concentration de "\textit{clumps}" massifs ($M_{clumps}$ $\sim$ 8.4 $\times 10^5 M_{\odot}$, 12\%), et contient quelques uns des plus denses corps du plan galactique (W43-MM1, W43-MM2 avec $n_{H_2}\sim 8 \times 10^4$ et $4\times 10^8 ~cm^{-3}$~respectivement). L'activité particulière de W43 suggère qu'il s'y passe une petite flambée d'étoiles ($SFR\sim 0.01~M_{\odot}~yr^{-1} $il y a 1 million d'années et $0.1 M_{\odot}yr^{-1}$ dans un futur proche). W43 est entourée par une enveloppe de gaz atomique de large diamètre ($\sim$290 pc), qui peut être la rémanente du gaz $H_I$ ayant formé le nuage moléculaire en premier lieu. Ces caractéristiques sont en accord avec l'appartenance de W43 à la région parfois appelée "anneau moléculaire" qui est connue pour être particulièrement riche en terme de nuages moléculaires et d'activités de formation stellaire. Voir Nguyen Luong et al. (2011b) pour détails. De plus, nous avons effectué, à travers l'ensemble du complexe W43, un nouveau survey avec le 30m de l'IRAM, pour observer les lignes moléculaires $^{13}CO~2-1$ et $C^{18}O~2-1$, les lignes moléculaires traçant le gaz dense telles que $HCO^+$, $N_2H^+$ à travers les sous-régions denses de W43 et un survey à 3~mm de largeur de bande de 8~GHz de W43-Main (voir le chapitre 4). Les résultats initiaux révèlent que les \textit{ridges} W43-MM1 et W43-MM2 subissent un effondrement global supersonic ($2 ~km.s^{-1}$), sur une échelle de quelques parsec. Cela a été mis à jour grâce à la comparaison et la modélisation des lignes d'émission des traceurs de l'optiquement épais tels que $H^{13}CO^+2-1, 1-0$. De l'émission étendue SiO 2-1 est aussi détectée à travers W43-Main, ce qui ne coïncide avec aucune signature de formation stellaire. Avec son lancement réussi, le satellite Herschel nous offre une nouvelle fenêtre d'observation pour l'étude des parties froides des nuages moléculaires, i.e. l'endroit où les étoiles se forment. Nous avons effectué un recensement des populations prestellaires/protostellaires et dérivé le taux de formation stellaire (SFR) pour le nuage W43. Un premier regard indique que W43 formera des étoiles avec efficacité dans le futur (voir section 5.3). Dans le chapitre 3, nous avons utilisé les données Herschel, Spitzer et ATLASGAL pour montrer que le filament IRDC G035.39-00.33 est froid (13-16~K) et dense ($n_{H_2}$ jusqu'à $9 \times 10^{22} cm^{-2}$), le qualifiant alors de "ridge". Ce ridge contient un total de 28 corps denses (FWHM$\sim$0.15 pc), parmi lesquels 13 corps denses massifs (MDCs) avec des masses allant de 20 à 50 $M_{\odot}$ et des densités entre $2-20\times10^5 cm^{-3}$. Les étoiles de masses moyennes jusqu'aux étoiles massives se forment potentiellement dans ces 13 MDCs. Étant donné leur concentration dans le filament IRDC G053.39-00.33, ils participent peut être à une petite flambée de l'activité de formation stellaire avec une SFE (efficience de formation stellaire) $\sim 15\%$, SFR$\sim 300 M_{\odot}~Myr^{-1}$, et $\sum_{SFR}\sim 40 ~M_{\odot} ~yr^{-1}~kpc^{-2}$(Nguyen Luong et al., 2011a). Le lien entre gaz et formation stellaire est évident. Schmidt (1959) fût le premier à énoncer qu'ils sont connectés via une relation entre densité de gaz et SFR : $\sum_{SFR}=A\sum^N_{gaz}$. Comme mentionné dans la section 1.3, cette relation empirique varie énormément en fonction de la nature de l'environnement, de la densité de gaz et des traceurs de formation stellaire que l'on utilise. Le diagramme densité de gaz vs SFR peut être utilisé pour distinguer les galaxies où à lieu une flambée d'étoiles des galaxies où la formation stellaire est normale (e.g. Daddi et al. 2010). Nous allons plus loin en proposant qu'il eut être utilisé pour faire la distinction entre nuage moléculaire où à lieu une flambée d'étoiles et nuage moléculaire formant des étoiles de façon normal . Les relations densité de gaz - SFR pour W43 et IRDC G035.39-00.33 furent comparées avec celles dérivées pour des galaxies externes (Kennicutt, 1998) et celles dérivées des régions de hautes densités formant des étoiles (Heiderman et al. 2010), voir les sections 2.3 et 3.4.2. Il ressort que W43 et IRDC G035.39-00.33 reposent dans le quadrant "flambée d'étoiles" cela dû au fait qu'elles forment des étoiles, et spécialement des étoiles massives, avec beaucoup d'efficacité. Ces deux régions méritent d'être investies plus avant puisqu'elles pourraient représenter un modèle miniature des processus physiques jouant dans les galaxies où ont lieu des flambées d'étoiles. Trouver plus d'exemples de flambée d'étoiles dans la voie lactée est nécessaire pour avoir une vue plus complète. Dans le diagramme densité de gaz - SFR, le complexe moléculaire W43 dans son entier se place entre les zones des galaxies spirales normales et les galaxies où ont lieu des flambées d'étoiles, probablement due au fait que c'est une région formant des étoiles massives, et ainsi traçant la même population stellaire que les mesures extragalactiques. D'un autre coté, les SFRs de IRDC G035.39-00.33 et W43-Main sont plusieurs ordre de grandeur au dessus de celles des galaxies, avec les mêmes densités de gaz (voir Fig. 2.7). Cette divergence est probablement crée par les différentes régions prises en compte dans cette étude. Une comparaison directe entre les relations galactiques et extragalactiques devraient en conséquence être précautionneuse. Cette étude montre aussi que l'intégralité des régions formant des étoiles massives, W43 par exemple, peuvent potentiellement être utilisées pour déduire les SFRs des galaxies. De plus, les régions formant des étoiles massives jouent probablement un rôle substantiel sur la dynamique à grandes échelles des galaxies, ce qui fût proposé pour être l'origine des relations densité de gaz - SFR pour les galaxies (Kennicut, 1998). La théorie des flots convergents est une des théorie prédominante pour expliquer la formation des nuages moléculaires et des étoiles, en particulier celles de grandes masses (Heitsch \& Hartmann, 2008). W43-Main et IRDC G035.39-00.33 forment des étoiles de grandes masses de manière efficace (voir chapitre 2 et 3). Ces régions montrent aussi des émissions étendues de SiO qui s'étendent jusqu'à l'échelle du parsec, sans être corrélées avec des protoétoiles proches. Des chocs provenant de flots sortant sont donc très peu probable pour expliquer ces émissions. Néanmoins, les observations traçant les hautes densités à travers W43-Main montrent qu'elle est en effondrement à de plus grandes échelles que celles des chocs. Ce fait pourrait suggérer que les émissions de SiO viennent de chocs à faibles vitesses à l'interface de collision crées par l'effondrement global. On s'attend à ce que ces chocs soient crées à ces fronts de collision, provoquant une élévation des instabilités dynamique et thermique, menant à une rapide fragmentation du nuage moléculaire et à la formation de corps denses massifs (Heitsch et al., 2008). Les conditions physique dans les modèles de flots convergents (T$\sim$20-100~K, v$\sim$1-10 $km.s^{-1}$) sont suffisantes pour générer des chocs C, mais pas des chocs J. Avec des flots convergents, on s'attend à ce que ces chocs soient largement répandus sur quelques parsecs, vu que la collision à virtuellement lieu partout dans le complexe (des centaines de parsecs). Sur une échelle bien plus large, différents filaments $H_I$ de W43 semblent converger avec un gradient de vitesse vers ces régions de chocs. Toutes ces structures sont baignées dans une grande enveloppe de $H_I$ (diamètre de 290 pc) qui peut être une rémanente du gaz $H_I$ tombé sur W43 pour former le gaz moléculaire. La position particulière de W43, à la jonction entre le bras du centaure et de la barre galactique, implique qu'il devrait subir une forte résonance donnant au gaz un fort moment cinétique pour s'écouler et se heurter violemment. De plus, dans d'autres régions de formation stellaire massive, bien qu'un peu plus faible, des signatures similaires de flots convergents ont étés observées (DR21, Schneider et al. 2010 ; Csengeri et al. 2011). Une conclusion ferme stipulant que les étoiles massives devraient se former d'une façon très dynamique est encore prématurée, mais les études de W43 et d'autres régions, semblent favoriser ce scénario. \\ Localisé à cette position avec des masse et densité extrêmes, et une anormale dispersion de vitesse, il est intéressant d'éclaircir pour W43 le rôle des flots convergents sur la formation des nuages moléculaires et des étoiles. Nous avons construit un grand catalogue contenant à la fois des données de continuum et de lignes moléculaires à travers cette région. Une analyse initiale a visé à étudier sa structure détaillée et sa cinématique. L'étude de sa chimie vient de commencer. Concernant les grandes échelles, nous sommes capable de caractériser les flots grandes échelles de $H_I$ qui forment les nuages moléculaires de W43 en utilisant les cartes de lignes spectrales de $H_I$ provenant des données VGPS. Les diagnostics des flots convergents sont approfondis en utilisant les données CO pour tracer les nuages de basse densité (Motte et al. en prép., Carlhoff et al. en prép.). Ces deux études sont complémentaires en ce qui concerne la cinématique et la dynamique des flots grandes échelles, et peuvent être couplées avec l'étude des activités de formation stellaire en utilisant les données \textit{Herschel} et \textit{Spitzer} pour former une vue cohérente depuis le gaz atomique diffus jusqu'aux clumps les plus denses formant des étoiles. Une recherche plus poussée aux petites échelles et elle aussi nécessaire. Dans le scénario des flots convergents, il semble que les filaments/ridges jouent un rôle majeur en accrétant de la masse sur les corps denses par des processus dynamiques. En prenant avantage des interféromètres existants, tels que IRAM PdBI, SMA, CARMA, nous étudions la cinématique des filaments/ridges en relation avec les corps formant des étoiles, à des résolutions de quelques arcsecondes. Avec l'arrivée prochaine d'ALMA, une nouvelle porte s'ouvre pour permettre la compréhension de la physique et de la chimie des corps et des filaments à des résolutions allant en dessous de l'arcseconde.
|
15 |
Archéologie galactique : contraintes observationnelles aux modèles de formation du disque épaisKordopatis, Georges 13 October 2011 (has links) (PDF)
L'archéologie galactique consiste à retrouver les signatures fossiles des accrétions passées de la Voie Lactée, grâce à l'identification et la caractérisation des populations stellaires qui composent notre Galaxie. Le but de cette thèse est de mieux comprendre la formation du disque épais de notre Galaxie, en se basant sur ∼700 spectres stellaires de basse résolution, obtenus dans le proche infra-rouge. Les outils et méthodes développés au cours de ce travail serviront au traitement et à l'interprétation future des données de la mission Gaia, qui collectera des spectres dans une configuration semblable à celle de l'échantillon observé. Se basant sur les algorithmes de paramétrisation spectrale automatique MATISSE et DEGAS, une procédure de traitement des spectres combinant de façon optimale ces deux approches a été proposée, afin d'estimer les paramètres atmosphériques des étoiles (température effective, gravité de surface, métallicité globale). Nous avons également déterminé les distances et positions galactocentriques des cibles, grâce à des modèles d'évolution stellaires, et nous avons effectué une caractérisation cinématique complète de l'échantillon. Les cibles appartenant au disque mince, disque épais et halo ont été sélectionnées, afin de caractériser chacune de ces sous-structures. Il a été trouvé que celles-ci sont bien des populations distinctes, caractérisées par des distributions chimiques et cinématiques différentes. De plus, les résultats ont montré que les propriétés du disque épais loin du voisinage solaire ne différaient que très peu de celles mesurées localement. Sans pour autant exclure de façon définitive des gradients verticaux intrinsèques dans le disque épais, les tendances en vitesse de rotation orbitale et en métallicité qui ont été mesurées ont pu être expliquées comme une transition continue du rapport entre les différentes composantes galactiques. De plus, une corrélation entre la vitesse orbitale de rotation et la métallicité a été détectée. Ce gradient suggère qu'une migration radiale des étoiles à partir des rayons internes de la Galaxie ne peut pas être le processus dominant ayant formé le disque épais. Enfin, les estimations des échelles de hauteur et de longueur du disque épais en fonction de la métallicité, ainsi que la distribution en excentricité de ces étoiles, ne montrent pas de signatures de reliques d'un satellite massif accrété. Au vu de ces résultats, un scénario de formation du disque épais, basé sur plusieurs fusions mineures de galaxies satellites semble être privilégié. Enfin, les outils développés pour cette étude ont également été utilisés sur près de 2300 spectres observés vers le pôle sud galactique, ainsi que sur plus de 1200 cibles du satellite CoRoT. Les résultats qui en découlent ont permis d'imposer de nouvelles contraintes radiales et verticales sur les structures galactiques.
|
16 |
Caractériser le milieu interstellaire : un clé pour comprendre l'UniversPety, Jérôme 06 June 2012 (has links) (PDF)
Qu'ont en commun la détection de carbone atomique à un redshift de 4, la cartographie à 1" de résolution de l'émission 12CO(1-0) de la galaxie du tourbillon (M51), l'étude des avant-plans galactiques de Planck, et l'étude de la cinématique du disque et du flot moléculaire de la proto-étoile HH30 ? Au-delà du fait qu'elles sont réalisées dans le domaine (sub-)millimétrique, ces observations sont liées aux processus physiques et chimiques du milieu interstellaire. Caractériser ces processus permet de comprendre les objets les plus divers de l'univers, des plus proches au plus lointains, des plus petits au plus grands. Je décris ici une décennie de travail consacrée à la compréhension du milieu interstellaire. Je commence par présenter deux des approches scientifiques que j'ai prises. La première concerne la caractérisition d'une des transitions les moins bien comprises du gaz dans son chemin vers la formation des étoiles, à savoir la transition HI vers H2.Je montre comment l'interprétation de l'émission 12CO(1-0) pointe tout autant vers le milieu dense et froid que vers le milieu diffus et tiède. Dans un 2ème temps, je décris la nécessité et la mise en place d'une référence observationnelle (la chevelure de la nébuleuse de la Tête de Cheval) pour les modéles photochimiques, eux-mêmes utilisés dans tous les contextes évoqués ci-dessus. La décennie qui vient sera aussi féconde grâce à plusieurs événements. Tout d'abord, la communauté qui étudie le milieu interstellaire se structure rapidement autour de grands projets. A mon niveau, je suis porteur du contrat ANR << Structure and CHemistry of the Inter-Stellar Medium >> (SCHISM) qui réunit observateurs, numériciens et théoréticiens de l'IRAM et de l'Observatoire de Paris. Par ailleurs, l'instrumentation radio fait des progrès spectaculaires qui vont déboucher sur la spectro-imagerie grand champ à haute résolution angulaire et spectrale. L'IRAM a un rôle prépondérant dans cette aventure et j'y contribue au niveau logiciel et algorithmique. Enfin, je participe à la maturation des nouveaux instruments comme les caméras grand-champs pour les antennes uniques et les projets ALMA et NOEMA en interférométrie (sub-)millimétrique. La conjonction de ces facteurs contribuera à percer à jour l'origine des galaxies, des étoiles, des systèmes planétaires et des molécules prébiotiques.
|
17 |
Le Milieu Interstellaire Local: région test et avant-plan.Raimond, Séverine 01 December 2011 (has links) (PDF)
La distribution tridimensionnelle de la matière interstellaire (ou milieu interstellaire, MIS) dans la Galaxie est un outil très général encore peu développé aujourd'hui, une raison majeur étant la difficulté d'estimer les distances aux complexes nuageux, une situation qui va changer très prochainement grâce à la mission Gaia. En effet, la détermination des distances aux nuages fait appel à la technique des mesures d'absorption le long des lignes de visée vers les étoiles, et donc requiert les valeurs de leurs distances, lesquelles seront précisément mesurées par Gaia. Une des techniques permettant d'estimer la structure 3D du MIS est l'inversion des colonnes absorbantes de gaz et de poussière mesurées vers un grand nombre d'étoiles situées à différentes distances et dans différentes directions. Le travail présenté dans cette thèse contribue à la constitution des bases de données nécessaires à cette technique, pour le milieu interstellaire proche, à l'étude des résultats de ces inversions, ainsi qu'aux liens entre différents traceurs de la matière interstellaire. L'ensemble se place dans la perspective des avancées qui seront permises en ce domaine grâce à Gaia et aux programmes en support à la mission. Le titre de cette thèse fait en ce sens référence aux utilisations des cartographies du MIS proche comme test des outils d'inversion qui doivent être développés vers les plus grandes échelles dans le contexte de la mission, et d'autre part aux utilisations des cartes comme supports à la détermination des paramètres stellaires, en fournissant des contraintes sur le rougissement lorsque celui-ci ne peut être déduit de façon indépendante par les observations spectroscopiques. Une première partie concerne l'acquisition et l'analyse de données spectroscopiques, avec en particulier la correction des raies telluriques et l'extraction des informations sur les raies interstellaires du sodium neutre NaI et du calcium ionisé CaII. Une deuxième partie présente l'ensemble des résultats. Une troisième partie est consacrée aux distributions 3D obtenues par inversion de la base ainsi augmentée, et à la recherche de liens entre les nuages denses proches reconstruits en 3D et les mesures d'émission radio par HI et CO. Une quatrième partie est une étude préparatoire aux analyses des relevés spectroscopiques en support à Gaia. Un premier volet est l'étude des incertitudes liées à la saturation des raies interstellaires du sodium neutre pour les étoiles distantes et aux méthodes potentielles pour les réduire. Un second volet est consacré à l'extraction de deux bandes interstellaires diffuses et à l'étude de leur corrélation avec les autres traceurs, ainsi qu'aux interprétations des valeurs anormales de ces bandes diffuses. Le but premier de ces études est la recherche d'une évaluation de l'extinction indépendante des mesures photométriques de Gaia, pour les objets distants.
|
18 |
Les céphéides à haute résolution angulaire : enveloppe circumstellaire et pulsationGallenne, Alexandre 19 October 2010 (has links) (PDF)
Depuis plus d'un siècle, la relation période-luminosité (P-L) des étoiles Céphéides est un échelon fondamentale de l'échelle des distances cosmologiques. Cependant, l'estimation des distances à partir de cette loi n'est précise qu'à ∼ 5 % et cette incertitude est principalement due à son étalonnage. L'amélioration de cet étalonnage nécessite une détermination précise (de manière indépendante de la relation P-L) de la distance des Céphéides proches. Jusqu'à récemment, les Céphéides étaient considérées comme dépourvues de matériel circumstellaire. En 2005, des observations interférométriques VLTI/VINCI et CHARA/FLUOR ont révélé l'existence d'enveloppe circumstellaire autour de certaines Céphéides. Ce ma- tériel environnant est particulièrement intéressant pour deux raisons : il pourrait avoir un impact sur l'estimation des distances et pourrait être lié à une perte de masse passée ou en cours. L'utilisation de la méthode de Baade-Wesselink classique pour la détermination indépendante des distance pourrait être significativement biaisée par la présence de ces enveloppes. Bien que leurs observations soient difficiles à cause du fort contraste entre la photosphère de l'étoile et l'enveloppe circumstellaire, plusieurs techniques d'observations ont le potentiel d'améliorer notre connaissance sur leurs propriétés physiques. Dans ce manuscrit, je discute en particulier des techniques de haute résolution angulaire que j'ai appliqué pour l'étude de plusieurs Céphéides Galactiques. Dans un premier temps j'ai utilisé des observations de la Céphéide RS Puppis en imagerie par optique adaptative avec NACO, couplée à un mode d'observation dit "cube", pour déduire le rapport de flux entre l'enveloppe et la photosphère de l'étoile dans deux bandes étroites centrées sur λ = 2.18 μm et λ = 1.64 μm. De plus grâce au mode cube, j'ai également pu effectuer une étude statistique du bruit de speckle me permettant d'étudier une éventuelle asymétrie. Dans un second temps, j'ai analysé des données VISIR pour étudier la distribution d'éner- gie spectrale d'un échantillon de Céphéides. Ces images, qui sont limitées par la diffraction, m'ont permis d'effectuer une photométrie précise dans la bande N et de mettre en évi- dence un excès infrarouge lié à la présence d'une composante circumstellaire. D'autre part en appliquant une analyse de Fourier j'ai montré que certaines de ces composantes sont résolues. J'ai ensuite exploré la bande K′ avec l'instrument de recombinaison FLUOR pour certaines Céphéides brillantes. Grâce à de nouvelles données sur l'étoile Y Oph, j'ai approfondi l'étude de son enveloppe circumstellaire. En utilisant un modèle d'étoile entourée d'une couronne sphérique, j'ai déterminé une taille angulaire de 4.54 ± 1.13 mas et une profondeur optique de 0.011 ± 0.006. Pour deux autres Céphéides, U Vul et S Sge, j'ai appliqué la méthode de Baade-Wesselink afin d'estimer une première mesure directe de leur distance. J'ai trouvé unedistanceded = 647 ± 45pcetd = 661 ± 57pc,respectivementpourUVuletSSge,ainsi qu'un rayon linéaire moyen R = 53.4 ± 3.7 R⊙ et R = 57.5 ± 4.9 R⊙ respectivement.
|
19 |
Étude de la variabilité des Supernovae de type Ia observées par la collaboration Nearby Supernova FactoryChotard, Nicolas 03 October 2011 (has links) (PDF)
Vers la fin des années 1990, l'utilisation des supernovae de type Ia (SNe Ia) comme indicateurs de distance a permis de mettre en évidence l'expansion accélérée de l'univers. Depuis lors, des campagnes d'observations de grandes envergures ont permis d'augmenter de façon significative le nombre de SNe Ia observées, mais les incertitudes systématiques liées à la qualité des échantillons de SNe Ia proches restent un facteur limitant sur la précision des mesures actuelles. C'est dans le but de réduire ces incertitudes que le projet the Nearby Supernova Factory (SNfactory), à l'aide d'un instrument spectro-photométrique dédié à l'observation des SNe Ia (the Supernova Integral Field Spectrograph), a collecté depuis 2004 plus de 3000 spectres de près de 200 SNe Ia proches. Une des limitations actuelles de leur utilisation, outre les aspects liés aux problèmes d'inter-calibration entre les différentes expériences, est celle du mélange des différentes composantes de leurs variabilités lors de la standardisation empirique de leur module de distance. Une meilleure séparation de ces composantes, ainsi que la découverte de nouveaux indicateurs de distance, font partie des améliorations que peut apporter un échantillon spectral de SNe Ia proches tel que celui de la collaboration SNfactory. Cette thèse de doctorat, effectuée à l'Institut de Physique Nucléaire de Lyon et au Lawrence Berkeley National Laboratory, s'inscrit directement dans cette problématique, en se concentrant sur la mesure d'indicateurs spectraux sur l'échantillon spectral de la collaboration Snfactory. Le plan de cette thèse est le suivant : La première partie présente le contexte scientifique ainsi que l'échantillon de SNe Ia de la collaboration SNfactory utilisé dans les analyses. La deuxième partie se concentre sur la méthode de mesure d'indicateurs spectraux appliquée à l'échantillon spectrale présenté, ainsi que sur une étude de leur sensibilité à l'extinction par le milieu interstellaire. La troisième partie est une étude des corrélations des indicateurs spectraux et de leur utilisation pour la standardisation des Sne Ia. Dans la dernière partie, une utilisation de ces indicateurs spectraux pour la détermination d'une loi d'extinction moyenne est présentée
|
20 |
Étude de la région de la source non-identifiée HESS J1745-303 avec l'instrument LAT à bord du satellite Fermi.Falletti, Lola 03 October 2013 (has links) (PDF)
Le LAT est l'instrument principal du satellite Fermi et permet d'étudier le ciel en rayons gamma de 20 MeV à plus de 300 GeV. Sa sensibilité accrue a permis l'augmentation du nombre de sources détectées dans le domaine des hautes énergies. Une partie importante de celles-ci n'a pas de contrepartie connue et une étude multi-longueur d'onde est nécessaire afin de comprendre l'origine du signal observé. Dans un premier temps, cette thèse présente l'étude morphologique et spectrale détaillée de la source non-identifiée HESS J1745--303, qui a été découverte dans le domaine gamma par l'expérience H.E.S.S. en 2006 puis analysée spécifiquement dans un article de 2008, à l'aide des données du LAT. Deux sources ponctuelles situées à une localisation proche de HESS J1745--303 sont présentes dans le catalogue à deux ans de données de Fermi (2FGL) mais une analyse dédiée de cette région est néanmoins nécessaire vu sa complexité. Elle est en effet localisée à ~1° du Centre Galactique et à moins de 0.5° du pulsar de la Souris, les deux sources les plus brillantes en gamma dans cette région. Les différents processus d'émission de photons sont présentés dans un second temps. Leurs simulations permettent d'effectuer une étude approfondie de l'origine de l'émission détectée aux hautes et très hautes énergies par le LAT et par H.E.S.S. L'émission de cette source reste en effet encore énigmatique de nos jours et une étude multi-longueur d'onde est effectuée afin de contraindre les modèles d'émission.
|
Page generated in 0.0827 seconds