• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Une Étude des GRBs et SGRs détectés par le système d'alerte sursauts d'INTEGRAL

Götz, Diego 14 January 2005 (has links) (PDF)
INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) est un satellite de l'Agence Spatiale Européenne, qui est dédié à l'imagerie et la spectroscopie fines dans la bande gamma molle. Sa charge utile est composée de deux instruments principaux : le spectromètre SPI - optimisé pour la détection de rayes fines (20 keV-8 MeV), et le télescope IBIS - optimisé pour l'imagerie a haute résolution (15 keV-10 MeV). Un des but de cette thèse était de fournir à la communauté scientifique un outil nouveau pour l'étude de la variabilité du « ciel gamma ». Cet outil est l'INTEGRAL Burst Alert System (IBAS), qui examine les données d'INTEGRAL à la recherche de sursauts gamma cosmiques (Gamma-Ray Bursts, GRBs, des sources éphémères et brillantes de radiation gamma), les localise et distribue leurs coordonnées en temps réel. Ma contribution à ce système a été de conduire des simulations de l'instrument IBIS/ISGRI avant le lancement d'INTEGRAL, à fin de développer les algorithmes d'imagerie et détection rapide utilisés par IBAS, et d'implémenter, tester et maintenir le logiciel après le lancement. Grâce à ce travail IBAS fournit les meilleures prestations en termes de rapidité et précision de localisation. IBAS a détecté 19 GRBs à présent. Leur analyse détaillée est présentée ici. Du point de vue de l'émission prompte les GRBs d'INTEGRAL ne révèlent aucune nouvelle caractéristique par rapport aux sursauts détectés dans le passé. Ils sont simplement plus faibles et notre analyse a permis de confirmer que beaucoup des aspects observés dans les sursauts plus brillants s'appliquent aussi aux GRBs les plus faibles. À ce propos, on peut noter que la bande énergétique d'IBIS/ISGRI ne permet pas, dans la plupart des cas d'étudier la courbure typique des spectres des GRBs, mais néanmoins elle permet de bien déterminer la pente de la loi de puissance de basse énergie. Les résultats les plus intéressants ont été obtenus par l'observation de l'émission rémanente des GRBs d'INTEGRAL dans d'autres bandes d'énergie. Grâce à la dissémination rapide des alertes d'IBAS et à la prompte réponse des autres télescopes, on a pu fournir de nouvelles vues des premières phases de l'émission rémanente de sursauts relativement faibles. Le cas de GRB 031203, par exemple, est particulièrement intéressant : pendant l'observation de XMM-Newton de son émission rémanente, un halo variable de diffusion en bande X a été découvert. Ce sursaut a été associé spectroscopiquement avec une Supernova de type Ic (SN 2003lw), et son redshift (z=0.105) le caractérise comme un des sursaut les plus proches et faibles avec une énergie relâchée de ~10^50 ergs. IBAS fournit aussi des alertes en temps réel pour d'autres sources, mis à part les GRBs. Plus de 100 sursauts courts associés au Soft Gamma Repeater SGR 1806-20 ont été détectés, créant ainsi une grande base de données de bonne qualité. En fait, on a pu étudier leurs caractéristiques spectrales et temporelles en détail. On peut résumer nos résultats sur SGR 1806-20 ainsi : (i) pour la première fois on a une bonne évidence d'évolution spectrale des sursaut SGR faibles, qui se traduit dans une anti-corrélation entre dureté et flux à l'intérieur des sursauts ; ce nouveau résultat représente un défi pour le modèle Magnetar, qui prévoit que la température effective du sursaut varie faiblement pendant le sursaut. (ii) le monitorage de la source fait par IBAS indique que son activité est encore en croissance. Une séquence de ~100 sursauts émis en ~10 minutes, a été détectée en temps réel par IBAS le 5 Octobre 2004.
2

Des microquasars aux systèmes binaires enfouis: enquête dans l'Univers des astres extrêmes...

Chaty, Sylvain 26 November 2007 (has links) (PDF)
Introduction:<br />Dans ce chapitre d'introduction je décris les caractéristiques générales, la formation et l'évolution des différentes familles de systèmes binaires de haute énergie, ainsi que le contexte général dans lequel s'inscrit ma recherche. Je finis par les grandes questions actuelles, et par la description de l'originalité de mes travaux de recherche. <br /><br />Microquasars: <br />Je présente un exposé synthétique de la recherche passée, présente et future sur les microquasars et les jets, et je vais montrer que les microquasars, c'est-à-dire les sources galactiques présentant des jets, sont parmi les meilleurs laboratoires d'étude des phénomènes de haute énergie et de physique des particules. Je vais tout d'abord rappeler l'analogie avec les quasars, puis je me concentrerai sur l'un des meilleurs représentants des microquasars, probablement l'archétype: l'astre GRS 1915+105. Je présenterai les phénomènes d'accrétion et d'éjection s'y produisant, en montrant que seule une approche multi-longueur d'onde permet une meilleure compréhension des phénomènes ayant lieu au sein de ces sources. Puis, je présente les jets à différentes échelles: les jets compacts, les jets à large échelle, ainsi que les interactions entre les éjections et le milieu environnant. Je finis cet exposé en montrant que les microquasars sont de bons candidats pour être des astres émetteurs d'astroparticules: photons de très haute énergie, rayons cosmiques et neutrinos. <br /><br />Sources INTEGRAL: <br />Un nouveau type de sources de rayons X a été découvert par l'observatoire INTEGRAL, dont la nature est révélée par des observations multi-longueurs d'onde. Parmi ces systèmes binaires de haute énergie, deux classes distinctes apparaissent. La première classe est constituée d'astres de haute énergie intrinsèquement obscurcis, dont IGR J16318-4848 semble être un représentant extrême. La seconde classe est peuplée d'astres nommés ``Transitoires rapides de rayons X à supergéante'' (``Supergiant Fast X-ray Transients'', SFXTs), dont IGR J17544-2619 semble être l'archétype. Je décris d'abord dans ce chapitre des observations en rayons X permettant une localisation précise de sources INTEGRAL, avant de présenter une étude multi-longueurs d'onde, en me focalisant sur les observations de l'optique à l'infrarouge moyen, d'un échantillon d'une vingtaine de sources INTEGRAL, incluant IGR J16318-4848 et IGR J17544-2619. Cette étude consiste tout d'abord en une astrométrie précise, une photométrie et une spectroscopie en optique et en infrarouge proche de ces objets, montrant la prédominance des systèmes binaires de grande masse contenant des supergéantes. Puis, je montre que dans le cas des sources obscurcies IGR J16318-4848, IGR J16195-4945 et IGR J16358-4726, les observations en infrarouge moyen suggèrent la présence de matériau absorbant (poussière et/ou gaz froid) entourant le système binaire dans son ensemble. Ce chapitre se termine par une discussion sur la nature des sources INTEGRAL en général, et de la distinction entre sources absorbées et SFXTs. <br /><br />Conclusion:<br />Ce qui a été accompli dans la compréhension des systèmes binaires de haute énergie, ce qu'il reste à faire dans ce domaine, et les questions importantes qui nécessitent d'être résolues, et qui vont occuper mon temps dans les années à venir... Ce chapitre est divisé en trois parties. Dans la première, j'aborde les questions liées aux population de sources Galactiques prises en tant que tout, et comment elles peuvent permettre de mieux comprendre les systèmes binaires de haute énergie. Dans la deuxième, je me concentre sur l'étude de la formation et de l'évolution des systèmes binaires de haute énergie en tant que tels, et sur les phénomènes présents dans ces systèmes. Dans la troisième, je détaille un projet qui me tient à coeur, et qui regroupe les deux précédents: la distinction entre progéniteurs d'étoiles à neutron et de trous noirs.
3

Modeling of the emission of active galactic nuclei at Fermi's era / Modélisation de l'émission des noyaux actifs de galaxie à l'ère Fermi

Vuillaume, Thomas 16 October 2015 (has links)
Les noyaux actifs de galaxie (NAG) sont les objets les plus énergétiques de l'univers. Cette incroyable puissance provient de l'énergie gravitationnel de matière en rotation autour d'un trou noir super-massif siégeant au centre des galaxies. Environ 10% des NAG sont pourvus de jets relativistes émanant de l'objet central (trou noir et matière environnante) et s'étalant sur des échelles de l'ordre de la galaxie hôte. Ces jets sont observés à toutes les longueurs d'ondes, de la radio aux rayons gamma les plus énergétiques. En dépit de nombreuses études et d'instruments de plus en plus précis depuis leur découverte dans les années 1950, les NAG sont encore très mal compris et la formation, la composition et l'accélération des jets sont des questions encore pleinement ouvertes. Le modèle le plus répandu visant à reproduire l'émission des NAG, le modèle "une zone" repose souvent sur des hypothèse ad-hoc et ne parvient pas à apporter une modélisation satisfaisante.Le paradigme du "two-flow" (deux fluides) développé à l'IPAG et basé sur une idée originale de Sol et al (1989) a pour but de fournir une vision unifiée et cohérente des jets de NAG. Cette théorie repose sur une l'hypothèse principale que les jets seraient en fait composés de deux fluides co-axiaux: une colonne centrale composée d'un plasma purement leptonique (électrons/positrons) se déplaçant à des vitesses relativistes et responsable pour la grande partie de l'émission non thermique observée entourée par une enveloppe composée d'un plasma baryonique (électrons/protons), régie pas la magnéto-hydrodynamique, se déplaçant à des vitesses sous-relativistes mais transportant la majorité de l'énergie. Cette hypothèse est basée sur des indices observationnels ainsi que sur des arguments théoriques et permet d'expliquer nombre des caractéristiques des NAG.Afin d'étudier plus en profondeur le paradigme du two-flow, un modèle numérique basé sur ses concepts et produisants des observables comparables aux observations est nécessaire.Durant ma thèse, j'ai participé au développement de ce modèle, m'intéressant notamment à la diffusion Compton inverse de photons provenant de l'extérieur du jet. Ce processus, primordial dans la modélisation des NAG, est aussi central dans le paradigme du two-flow car il est à l'origine de l'accélération de la colonne via l'effet fusée Compton. Pour cela, j'ai du développer des nouvelles approximations analytiques de la diffusion Compton d'une distribution thermique de photons.En m'intéressant à l'effet fusée Compton, j'ai pu montré que dans le champ de photon thermique d'un NAG, le facteur de Lorentz d'ensemble du plasma pouvait être sujet à des variations le long du jet en fonction de la distance à l'objet central. Ces variations peuvent avoir un effet important sur l'émission observée et peuvent induire de la variabilité spatiale et temporelle. J'ai également montré que les facteurs de Lorentz terminaux obtenus étaient compatibles avec les conditions physiques attendus dans les jets et avec les observations.Le modèle complet produit des DES directement comparables aux observations. Néanmoins, le modèle est par nature erratique et il est quasiment impossible de relier directement les paramètres du modèles avec les DES produites. Malheureusement, les procédures standards d'adaptation automatique aux données (e.g. basé sur les méthodes de gradient) ne sont pas adaptées au modèle à cause de son grand nombre de paramètres, de sa non-linéarité et du temps de calcul important. Afin de palier à ce problème, j'ai développé une procédure d'adaptation automatique basée sur les algorithmes génétiques. L'utilisation de cet outil a permis la reproduction de plusieurs DES par le modèle. J'ai également montré que le modèle était capable de reproduire les DES observées avec des facteurs de Lorentz d'ensemble relativement bas, ce qui pourrait potentiellement apporter une harmonisation entre les observations et les nécessités théoriques. / Active galactic nuclei (AGN) are the most energetic objects known in the universe. Their fantastic energy is due to efficient conversion of gravitational energy of mass accreted on super-massive black-holes at the center of galaxy into luminous energy. 10% of AGN are even more incredible as they display relativistic jets on galaxy scales. Those jets are observed at all energies, from far radio to highest gamma-rays. Despite intense study since their discovery in the 50's and more and more observations, favored by rapid progress in instrumentation, AGN are still widely misunderstood. The questions of formation, composition, and acceleration of jets are central but still a matter of debates. Models aiming at reproducing observed emission have been developed throughout the years. The most common one, the one-zone model, often relies on ad hoc hypothesis and does not provide a satisfactory answer.The two-flow paradigm developed at IPAG and based on an original idea from Sol et al (1989) aims at giving a more coherent and physical representation of AGN jets. The principal assumption is that jets are actually composed of two coaxial flows: an inner spine made of a pure pair plasma, moving at relativistic speed and responsible for the non-thermal observed emission surrounded by an external sheath, made of a baryonic MHD plasma, midly relativistic but carrying most of the power. The two-flow paradigm finds roots in observations as well as theoretical arguments and has been able to explain many AGN features.During my PhD, I studied this paradigm and contributed to the development of a numerical model based on its concepts. I have been particularly interested in the inverse Compton scattering of thermal photons, fundamental process in the modeling of AGN emission, as well as the Compton rocket effect, key to the acceleration of the spine in the two-flow paradigm.However, taking into account the inverse Compton emission, with the complete cross-section (including the Klein-Nishina regime) and the anisotropy can be very time consuming. To accomplish fast and efficient computation of the external Compton emission, I have had to formulate new analytical approximations of the scattering of a thermal distribution of photons.I have also studied the Compton rocket effect, responsible for the acceleration of the inner spine in the two-flow paradigm. I showed that the resulting bulk Lorentz factor of the flow in the complex photon field of an AGN is subject to variations along the jet as a function of the distance to the central engine. These variations can have drastic effects on the observed emission and could induce variability, both spatially and temporally.I also showed that the terminal bulk Lorentz factor obtained are compatible with physical conditions expected in jets and with observations.The complete model produce spectral energy distribution (SED) comparable to observed ones. However, the model is by nature erratic and it is difficult to make a direct link between the model parameters (input) and the SED (output). Unfortunately, standard data fitting procedures (e.g. based on gradient methods) are not adapted to the model due to its important number of parameters, its important computing time and its non-linearity. In order to circumvent this issue, I have developed a fitting tool based on genetic algorithms. The application of this algorithm allowed me to successfully fit several SED. In particular, I have also showed that the model, because based on a structured jet model, can reproduce observations with low bulk Lorentz factor, thus giving hope to match observations and theoretical requirements in this matter.
4

Les cascades électromagnétiques cosmologiques comme sondes du milieu intergalactique / Cosmological electromagnetic cascades as probe of the Universe

Fitoussi, Thomas 13 October 2017 (has links)
Cette thèse vise à étudier le phénomène dit de " cascades électromagnétiques cosmologiques ". Ces cascades sont typiquement générées dans le milieu intergalactique par l'absorption de rayons gamma sur les photons du fond optique / UV et par la production de paires électron / positron associés. Ces leptons eux-mêmes interagissent avec les photons du fond diffus cosmologique via diffusion inverse Compton pour produire de nouveaux rayons gamma qui eux même peuvent s'annihiler, générant à partir d'un unique photon primaire toute une gerbe de photons et de particules secondaires. D'un point de vue observationnel, le développement de cette cascade introduit trois effets : une déformation du spectre à haute énergie, un retard temporel dans l'arrivée des rayons gamma et une extension de la taille apparente de la source. Les cascades électromagnétiques cosmologiques ont commencé à être étudiées dans les années soixante. Mais ce n'est qu'à partir des années 2010 avec l'arrivée du satellite Fermi (entre autres) et des observations dans la bande au GeV et au TeV que la discipline a explosé. Le phénomène est particulièrement important. D'une part il altère le spectre observé des sources rendant difficile la compréhension de la physique de ces dernières. D'autre part les cascades se développant dans le milieu extragalactique, elles sont très sensibles à la composition de ce dernier (fond diffus de photons, champ magnétique). Or ce milieu étant très ténu, il est difficile à étudier. Les cascades deviennent alors une formidable sonde pour accéder à sa compréhension et pouvoir en comprendre l'origine qui remonte au commencement de l'Univers. Pourtant les cascades cosmologiques sont un phénomène complexe faisant intervenir des interactions difficiles à modéliser (sections efficaces complexes) et le transport de particules dans un Univers en expansion (cosmologie). Face à cette complexité les expressions analytiques sont vite limitées et le passage au numérique devient inévitable. Dans le cadre de cette thèse un code de simulation Monte Carlo a donc été développé visant à reproduire aussi précisément que possible le phénomène des cascades. Ce code a été testé et validé en le confrontant aux expressions analytiques. Grâce à ce code, le rôle des différents paramètres physiques impactant le développement de la cascade a été étudié de manière systématique. Cette étude a permis de mieux comprendre la physique du phénomène. En particulier, l'impact des propriétés du milieu extragalactique (fond diffus extragalactique, champ magnétique extragalactique) sur les observables a été mis en évidence. Finalement, une seconde étude a été menée pour mesurer la contribution des cascades au fond gamma extragalactique. Des travaux récents montrent qu'une grande partie de l'émission diffuse à très haute énergie provient de sources ponctuelles non résolues (blazars en particulier). Ces sources gamma (résolues et non résolues) doivent en principe initier des cascades qui peuvent contribuer au fond diffus. En partant d'une modélisation de l'émission des blazars à différents redshifts, l'absorption et la contribution des cascades ont alors été calculées à l'aide du code Monte Carlo. Les résultats montrent que la contribution des cascades au fond gamma extragalactique pourrait violer les limites Fermi mais l'excès doit encore être confirmé. / This thesis aims at studying "cosmological electromagnetic cascades". These cascades are initiated by the absorption of very high energy gamma-rays through gamma-gamma annihilation with optical / UV background photons of the intergalactic medium. In this interaction, electron/positron pairs are produced. The newly created leptons interact with photons of the Cosmological Microwave Background producing new gamma-rays through inverse Compton scattering which can also annihilate producing a cascade of secondary particles from a single primary photon. Observationally, the development of this cascade has three effects : the observed high energy spectrum is altered, observed photons arrive with a time delay with respect to primary photons and the source appears extended. Cosmological electromagnetic cascades start to being studied in the early sixties. But it is during the 2010's with the Fermi satellite and GeV to TeV observations that the field has really started to being explored. In the fast evolving backgound of gamma-ray astronomy, understanding the cascade physics has become a crucial stake. First the observed spectrum from a distant source is altered, which directly affects the modelling of high energy sources. Secondly, the cascades develop in the extragalactic medium and are very sensitive to its composition (background light, magnetic field). This medium is hard to study because it is extremely thin. Hence the cosmological cascades are a formidable probe to access its comprehension and its origin coming from the very beginning of our Universe. Yet the cosmological cascades are a complex phenomenon which involves complicated interactions (complex cross sections) and transport of particles in an expanding Universe. Analytical expressions are rapidly limited and numerical computations are required. In this thesis a Monte Carlo simulation code has been developed aiming at reproducing the cosmological cascades. This code has been tested and validated against analytical expressions. With the simulation code, a systematic study of the parameters impacting the development of the cascade has been led. This study allows a better understanding of the cascade physics. Especially, the impact of the intergalactic medium properties (extragalactic background light, extragalactic magnetic field) on the observables has been highlighted. Finally, a second study has been done to measure the contribution of cascades to the extragalactic gamma ray background. Recent works show that a great part of the diffuse emission at very high energy is explained by unresolved sources (blazars in particular). These gamma sources (resolved and unresolved) must in principle initiate cosmological cascades which can also contribute to the extragalactic gamma ray background. Starting from a modeling of the blazars at different redshifts, absorption and contribution of the cascades have been estimated with the simulation code. The results show that the contribution of the cascades might violate the Fermi limits but the excess must be confirmed.
5

Une fenêtre sur les processus stochastiques et la cosmologie gamma à travers les études spectrales et temporelles d'AGN observés par H.E.S.S.

Biteau, Jonathan 22 February 2013 (has links) (PDF)
Cinquante ans après la découverte de l'origine extragalactique des quasars, leurs noyaux (AGN) et les jets qu'ils montrent parfois nous réservent encore des surprises, en particulier dans le domaine des rayons gamma. Au dessus de 100 GeV, les télescopes Cherenkov tels que H.E.S.S. ont détecté plus de 50 AGN, principalement des blazars, objets dont le jet pointe vers l'observateur. La détection de deux d'entre eux, 1ES 1312-423 et SHBL J001355.9-185406, est décrite dans cette thèse. Leurs spectres multi longueurs d'onde sont ajustés par un modèle synchrotron self-Compton. Les rayons gamma émis par les blazars sont en partie absorbés par la lumière de fond extragalactique (EBL), deuxième composante cosmologique diffuse la plus intense, qui contient l'histoire intégrée de la formation d'étoiles. La première détection de cette absorption au dessus de 100 GeV est réalisée, conduisant à la mesure de l'amplitude du pic optique de l'EBL à 20% près. Finalement, les variations extrêmes du flux des blazars sont étudiées à l'aide des éruptions de PKS 2155-304 vues par H.E.S.S.. L'observation d'une distribution de flux hautement asymétrique et d'une corrélation R.M.S.-flux sont expliquées dans le cadre d'un modèle cinématique, où l'émission observée est une réalisation d'un processus stochastique.
6

Etude des objets transitoires à haute énergie dans l'univers dans l'ère des observations multi-messager / Study of the high-energy transeint objects in the Universe in the era of the multimessenger observations

Turpin, Damien 07 December 2016 (has links)
L'Univers est continûement le théâtre d'événements explosifs capables de relâcher une énorme quantité d'énergie sur des courtes échelles de temps. Ces sources transitoires comme les sursauts gamma, les supernovae ou les noyaux actifs de galaxie sont souvent associées à des objets extrêmes comme des étoiles à neutrons ou des trous noirs. De manière générale, ces sources émettent des radiations électromagnétiques dans une large bande spectrale voire sur la totalité du spectre pour les cas les plus extrêmes. Dès lors, une analyse multi-longueur d'onde est vitale pour étudier et comprendre la physique complexe de ces objets. De plus, au voisinage de ces sources, des particules (rayons cosmiques, RC) pourraient être efficacement accélérées jusqu'à des énergies très elevées dans des processus de chocs violents. L'interaction de ces RCs avec l'environnement peut conduire à la production d'un nombre significatif de neutrinos de hautes énergies. Par conséquent, l'étude des objets transitoires par le biais de l'astronomie neutrino offre la possibilité d'identifier enfin la nature des puissants accélérateurs cosmiques.Cette thèse est dédiée à l'étude de deux sources transitoires parmi les plus extrêmes dans l'Univers : les sursauts gamma (en anglais, Gamma-Ray Bursts : GRBs) détectés il y a ~ 50 ans et les sursauts radio (en anglais, Fast Radio Bursts : FRBs) fraîchement découverts il y a ~ 15 ans. Ces sources sont caractérisées par l'émission "prompte" d'un flash gamma (keV-MeV) durant de quelques ms à plusieurs secondes dans le cadre des GRBs et d'un flash intense en radio (GHz) durant quelques ms pour les FRBs. Dans le cas des GRBs une émission rémanente dite "afterglow" est observée dans une large gamme spectrale (X, visible et radio) alors que jusqu'à présent aucune autre contrepartie électromagnétique provenant d'un FRB n'a été découverte. Ces dernières années des modèles d'émission multi-longueur d'onde et multi-messager ont été développés afin d'expliquer ces 2 phénomènes. L'objectif majeur de ce travail de thèse est de tester ces modèles d'émission afin de contraindre la physique et la nature de ces deux objets. Pour cela, une analyse détaillée des propriétés physiques de l'émission afterglow des GRBs a été menée grâce à un large échantillon de données collectées ces 20 dernières années par diverses télescopes. Cette étude a permis de mettre en évidence les lacunes et les réussites du modèle GRB dit "standard" mais aussi les liens physiques subtils existant entre l'émission prompte des GRBs et leurs rémanences. Une recherche de signal neutrino en coïncidence avec les GRBs/FRBs a aussi été réalisée avec le télescope à neutrinos ANTARES. Les résultats sont décrits dans cette thèse ainsi que les contraintes apportées sur les processus d'accélération des particules durant ces phénomènes transitoires. Enfin, ce manuscrit rend compte des différents programmes d'observations innovants qui ont été engagés sur les télescopes optiques TAROT et Zadko et le télescope à neutrinos ANTARES afin de contraindre la nature des progéniteurs des GRBs/FRBs. / The Universe is continuously the scene of explosive events capable of releasing a tremendous amount of energy in short time scales. These transients like Gamma-Ray Bursts, Supernovae or Active Galactic Nuclei are often associated with extreme objects such as neutron stars or black holes. Generally, these sources emit light in a large spectral energy range and sometimes in the whole electromagnetic spectrum for the most extreme cases. Thus, a multi-wavelength analysis is crucial to study and understand the complex physical processes at work. Furthermore, in the vicinity of these sources, particles (cosmic-rays, CRs) could be efficiently accelerated up to very high energies by violent shock mecanisms. The interaction of these CRs with the surrounding environment may lead to a substantial production of high-energy neutrinos. Therefore, the study of the high-energy transient objects through neutrino astronomy offer the possibility to finally identify the nature of the powerful cosmic accelerators a hundred year after the discovery of the cosmic-rays.This thesis is dedicated to the study of two transient sources among the most extreme ones observed in the Universe: the Gamma-Ray Bursts (GRBs) detected ~ 50 years ago and the Fast Radio Bursts (FRBs) newly discovered ~ 15 years ago. These sources are characterised by the "prompt" emission of a gamma-ray flash (keV-MeV) lasting few ms up to few seconds for GRBs and an intense pulse of radio light (GHz) lasting few ms for FRBs. In the case of GRBs a late broadband afterglow emission is observed in X-rays/optical/radio domain while up to now no other electromagnetic counterpart has ever been detected in coincidence with any FRBs. These last years, many models predicting a multi-wavelength and a multi-messenger emission from these two phenomena have been developped. The main goal of this thesis work is to test these models in order to constrain the physics and the nature of the GRBs/FRBs. To do so, a detailed analysis on the physical properties of the GRB afterglow emission was made thanks to a large set of data collected these last 20 years by various facilities. The study reveals the major problems but also the successes encountered with the so-called "standard" GRB model. Subtle connections between the prompt and the afterglow emission are also discussed. In addition, a search for a neutrino signal from GRBs/FRBs was realised with the ANTARES neutrino telescope. The results are described in this thesis as well as the constraints on the particle acceleration mecanisms occuring during these transient phenomena.At last, this manuscript presents the different innovative observational programs realised in the optical domain with the TAROT and Zadko telescopes and in the astroparticle side with the ANTARES neutrino telescope in order to probe the nature of the GRBs/FRBs progenitors.
7

Origine et physique d'annihilation des positrons dans la Galaxie

Alexis, Anthony 01 July 2014 (has links) (PDF)
Une émission gamma à 511 keV est observée depuis le début des années 1970 dans la direction du centre Galactique. Cette émission est la signature de l'annihilation d'électrons avec des positrons qui sont les antiparticules des électrons. Malheureusement, l'origine de ces positrons galactiques reste à l'heure actuelle un mystère. De nombreuses sources de positrons ont été proposées mais elles présentent toutes des difficultés à expliquer cette émission d'annihilation galactique. Celle-ci possède une distribution spatiale particulière. Depuis 2002, le spectromètre SPI à bord de l'observatoire spatial INTEGRAL révèle une émission fortement concentrée dans le bulbe galactique et une faible émission en provenance du disque galactique. Cette distribution spatiale est totalement atypique car elle ne ressemble à aucune distribution galactique connue, que ce soit d'une population stellaire ou d'un gaz interstellaire. L'hypothèse selon laquelle les positrons s'annihilent à proximité de leur source (c.-à-d. que la distribution spatiale de l'émission d'annihilation est identique à la distribution spatiale des sources) a donc été remise en cause. Des études récentes semblent suggérer que les positrons pourraient se propager loin de leur source avant de s'annihiler. Ceci permettrait de résoudre éventuellement l'énigme sur l'origine des positrons galactiques. Cette thèse a été consacrée à modéliser la propagation puis l'annihilation des positrons dans la Galaxie, dans le but de comparer des modèles spatiaux de l'émission d'annihilation aux dernières données mesurées par SPI/INTEGRAL. Cette méthode nous permet en effet de poser des contraintes sur l'origine des positrons galactiques. Nous avons donc développé un code de simulation Monte Carlo de transport des positrons dans la Galaxie dans lequel nous avons implémenté toutes les connaissances théoriques et observationnelles de la physique des positrons (sources, modes de transport, pertes en énergie, modes d'annihilation) et du milieu interstellaire de la Galaxie (distributions du gaz interstellaire, champs magnétiques galactiques, structure des phases gazeuses). Dues aux incertitudes entourant de nombreux paramètres physiques (champs magnétique du halo galactique, structure des phases du milieu interstellaire, etc.), nous avons implémenté plusieurs modèles pouvant potentiellement rendre compte de ces paramètres. Ces paramétrages différents de la Galaxie nous ont ainsi permis d'estimer leur impact sur la propagation et l'émission d'annihilation des positrons. Nous avons appliqué ce code à l'étude des positrons émis par la décroissance β+ de l'26Al, du 44Ti et du 56Ni qui sont continûment produits dans la Galaxie au coeur des étoiles massives et des explosions de supernovae. Nous avons étudié ces sources car l'idée que celles-ci pourraient expliquer l'émission d'annihilation galactique est largement répandue depuis des décennies. Nous avons montré que, peu importe le paramétrage de la Galaxie, ces positrons permettent d'expliquer l'émission du disque mais pas la totalité de l'émission du bulbe. La raison est simple : ces positrons ne se propagent pas très loin de leur source avant de s'annihiler. Dans ce cadre, une source supplémentaire de positrons dans le bulbe est nécessaire pour rendre compte de la totalité de l'émission. Nous avons montré qu'une source transitoire de positrons (d'énergie ~MeV) située au centre de la Galaxie pourrait expliquer l'émission du bulbe.
8

A contribution to gamma-ray astronomy of GeV-TeV Active Galaxies with Fermi and H.E.S.S.

Giebels, Berrie 20 April 2011 (has links) (PDF)
L'astronomie des rayons g de haute (E > 100MeV, HE) et de très haute énergie (E 100GeV, VHE) ont effectué des progrès considérables en moins d'une décennie. Le nombre de sources émettrices dans ce régime d'énergie a augmenté de plus d'un ordre de grandeur, de nouvelles classes d'émetteurs ont été découvertes et des nouvelles sous-classes ont été établies basées sur l'émission gamma, et les sources connues sont à présent résolues à des échelles spatiales ou temporelles sans précédent révélant de nouvelles propriétés. Les noyaux actifs de galaxie (AGN) sont l'une des classes d'émetteurs les plus énergétiques, dont le pic de puissance émis dans le spectre électromagnétique peut dans certains cas dépasser la capacité de mesure des instruments actuels, et dont l'investigation requiert la maîtrise simultanée du ciel g HE et VHE qu'apportent les expériences Cerenkov au sol (atmospheric Cerenkov telescope, ou ACT) et le satellite Fermi.

Page generated in 0.5426 seconds