• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Asymmetric Alkenylation of Enones and Other α,β-Unsaturated Carbonyl Derivatives Using Chiral 3,3′-Disubstituted Binaphthols and Boronates

Guobadia, Bobby 22 May 2009 (has links)
Various α,β-unsaturated carbonyl compounds and derivatives were explored in order to expand the range of substrates for the 1,4-addition of alkenylboronates using 3,3′-disubstituted binaphthols. Enones 2.60 were examined and found to be suitable for conjugate addition under our proposed reaction conditions. The asymmetric 1,4-additions of alkenylboronates to enones 2.60 using catalytic amounts of 3,3′-disubstituted binaphthols was shown to occur with moderate to good yields and high enantioselectivities. The chiral products could serve as enantioenriched substrates for further transformation such as asymmetric reduction, which was performed with good yield and selectivity. The absolute configuration for the alkenylation of enones was also confirmed to be the (R) enantiomer using (S)-3,3′-disubstituted binaphthols via X-ray crystallographic analysis. Investigations into selective Baeyer-Villiger oxidation of 1,4-addition products of enones was also examined. Although the desire ester products were not obtained, intriguing informative findings were still obtained from the investigation.
2

Asymmetric Alkenylation of Enones and Other α,β-Unsaturated Carbonyl Derivatives Using Chiral 3,3′-Disubstituted Binaphthols and Boronates

Guobadia, Bobby 22 May 2009 (has links)
Various α,β-unsaturated carbonyl compounds and derivatives were explored in order to expand the range of substrates for the 1,4-addition of alkenylboronates using 3,3′-disubstituted binaphthols. Enones 2.60 were examined and found to be suitable for conjugate addition under our proposed reaction conditions. The asymmetric 1,4-additions of alkenylboronates to enones 2.60 using catalytic amounts of 3,3′-disubstituted binaphthols was shown to occur with moderate to good yields and high enantioselectivities. The chiral products could serve as enantioenriched substrates for further transformation such as asymmetric reduction, which was performed with good yield and selectivity. The absolute configuration for the alkenylation of enones was also confirmed to be the (R) enantiomer using (S)-3,3′-disubstituted binaphthols via X-ray crystallographic analysis. Investigations into selective Baeyer-Villiger oxidation of 1,4-addition products of enones was also examined. Although the desire ester products were not obtained, intriguing informative findings were still obtained from the investigation.
3

Innovative Methods for the Catalyzed Construction of Carbon-Carbon and Carbon-Hydrogen Bonds

Mahoney, Stuart James January 2012 (has links)
The selective transformation of carbon-carbon and carbon-hydrogen bonds represents an attractive approach and rapidly developing frontier in synthesis. Benefits include step and atom economy, as well as the ubiquitous presence in organic molecules. Advances to this exciting realm of synthesis are described in this thesis with an emphasis on the development of catalytic, selective reactions under mild conditions. Additionally some applications of the methodologies are demonstrated. In Chapter 1, the first examples of inter-and intramolecular enantioselective conjugate alkenylations employing organostannanes are reported. A chiral, cationic Rh(I)-diene complex catalyzed the enantioselective conjugate addition of alkenylstannanes to benzylidene Meldrum’s acids in moderate enantiomeric ratios and yields. Notably, the cationic and anhydrous conditions required for the asymmetric alkenylation are complementary to existing protocols employing other alkenylmetals. In Chapter 2, a domino, one-pot formation of tetracyclic ketones from benzylidene Meldrum’s acids using Sc(OTf)3 via a [1,5]-hydride shift/cyclization/Friedel-Crafts acylation sequence is described. Respectable yields were obtained in accord with the ability to convert to the spiro-intermediate, and considering the formation of three new bonds: one C-H and two C-C bonds. An intriguing carbon-carbon bond cleavage was also serendipitously discovered as part of a competing reaction pathway. In Chapter 3, the pursuit of novel C-H bond transformations led to the development of non-carbonyl-stabilized rhodium carbenoid Csp3-H insertions. This methodology enabled the rapid synthesis of N-fused indolines and related complex heterocycles from N-aziridinylimines. By using a rhodium carboxamidate catalyst, competing processes were minimized and C-H insertions were found to proceed in moderate to high yields. Also disclosed is an expedient total synthesis of (±)-cryptaustoline, a dibenzopyrrocoline alkaloid, which highlights the methodology. In Chapter 4, the Lewis acid promoted substitution of Meldrum’s acid discovered during the course of the domino reaction was explored in detail. The protocol transforms unstrained quaternary and tertiary benzylic Csp3-Csp3 bonds into Csp3-X bonds (X = C, N, H) and has even shown to be advantageous with regards to synthetic utility over the use of alternative leaving groups for substitutions at quaternary benzylic centers. This reaction has a broad scope both in terms of suitable substrates and nucleophiles with good to excellent yields obtained (typically >90%).
4

Innovative Methods for the Catalyzed Construction of Carbon-Carbon and Carbon-Hydrogen Bonds

Mahoney, Stuart James January 2012 (has links)
The selective transformation of carbon-carbon and carbon-hydrogen bonds represents an attractive approach and rapidly developing frontier in synthesis. Benefits include step and atom economy, as well as the ubiquitous presence in organic molecules. Advances to this exciting realm of synthesis are described in this thesis with an emphasis on the development of catalytic, selective reactions under mild conditions. Additionally some applications of the methodologies are demonstrated. In Chapter 1, the first examples of inter-and intramolecular enantioselective conjugate alkenylations employing organostannanes are reported. A chiral, cationic Rh(I)-diene complex catalyzed the enantioselective conjugate addition of alkenylstannanes to benzylidene Meldrum’s acids in moderate enantiomeric ratios and yields. Notably, the cationic and anhydrous conditions required for the asymmetric alkenylation are complementary to existing protocols employing other alkenylmetals. In Chapter 2, a domino, one-pot formation of tetracyclic ketones from benzylidene Meldrum’s acids using Sc(OTf)3 via a [1,5]-hydride shift/cyclization/Friedel-Crafts acylation sequence is described. Respectable yields were obtained in accord with the ability to convert to the spiro-intermediate, and considering the formation of three new bonds: one C-H and two C-C bonds. An intriguing carbon-carbon bond cleavage was also serendipitously discovered as part of a competing reaction pathway. In Chapter 3, the pursuit of novel C-H bond transformations led to the development of non-carbonyl-stabilized rhodium carbenoid Csp3-H insertions. This methodology enabled the rapid synthesis of N-fused indolines and related complex heterocycles from N-aziridinylimines. By using a rhodium carboxamidate catalyst, competing processes were minimized and C-H insertions were found to proceed in moderate to high yields. Also disclosed is an expedient total synthesis of (±)-cryptaustoline, a dibenzopyrrocoline alkaloid, which highlights the methodology. In Chapter 4, the Lewis acid promoted substitution of Meldrum’s acid discovered during the course of the domino reaction was explored in detail. The protocol transforms unstrained quaternary and tertiary benzylic Csp3-Csp3 bonds into Csp3-X bonds (X = C, N, H) and has even shown to be advantageous with regards to synthetic utility over the use of alternative leaving groups for substitutions at quaternary benzylic centers. This reaction has a broad scope both in terms of suitable substrates and nucleophiles with good to excellent yields obtained (typically >90%).

Page generated in 0.124 seconds