• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of Homo A-CD Estrogens for Potential Use in Hormone Replacement Therapy

Talbi, Oussama January 2015 (has links)
Hormone replacement therapy (HRT) has been subject to much debate due to concerns that long term use of such treatment of menopause increases the risk of breast and uterine cancer. This is thought to be caused by estradiol (1) binding to the estrogen receptor α (ERα) resulting in increased cell proliferation. Another possible mechanism relates to toxicity of the estrodiol metabolites, which are thought to be genotoxic ortho-quinones. In a previous project, a series of A-CD estrogens (2) were synthesised as non-carcinogenic estradiol agonists where the cis CD ring junction was thought to be the cause of the desirable selectivity for ERβ. In this thesis, homo A-CDs were synthesised (3) with expansion of the D ring thought to increase the selecitivty for ERβ. Relative Binding Affinities (RBA) were determined with selectivity to ERα and ERβ. Most ligands showed decreased selectivity when compared to the original A-CD series. However, compounds carrying the CF3 moiety continued to show very high potency. In addition, novel synthetic routes were employed in the preparation of certain compounds.
2

A Theoretical Revisit on 2-Norbornyl Cation

Zuo, Tianming, Huang, Thomas 01 September 2004 (has links)
The 2-norbornyl cation is an old topic in physical-organic chemistry. Whether in classical or non-classical form (partial bridged form) it has been one of the focus of discussion. Currently the experimental data and theoretical calculations favorably support the idea that 2-norbornyl cation is not in the classical form in the stable-ion condition. In this paper, first, we will show that a 3-center-2-electron π-complex is formed by the collapse of 2-norbornyl cation. Further, using different theoretical methods (B3LYP, MP2) with different basis sets (6-31+G, 6-31G(d, p), 6-311G(d, p), 6-311G(2d, p)), we find that there is a trend for the 3-center-2-electron π-complex to approach the Cs symmetry, and this π-complex oscillates within the numerical limits of the perfect Cs symmetrical configuration. The stabilization energies of the π-complex are 13.87 Kcal/mol and 19.47 Kcal/mol by B3LYP/6-31+G and MP2/6-31+G, respectively. Second, our calculations also show that the transition state between 2-norbornyl cation and 3-norbornyl cation is formed by a 3, 2-proton shift, not the generally accepted 3, 2-hydride shift. The activation energy of this 3, 2-proton shift is 10.9 Kcal/mol. Detailed structural changes in the optimization process and the formation of transition state (also a 3-center-2-electron π-complex) between 2-norbornyl cation and 3-norbornyl cation will also be included.
3

A novel route to trans-THFs and the synthesis of sylvaticin

Williams, Oliver M. H. January 2009 (has links)
trans-2,5-Disubstituted-tetrahydrofurans (THFs) are a common structural motif in many biologically active natural products, particularly in the Annonaceous acetogenins. This thesis develops a new route for their synthesis and applies it to the total synthesis of the Annonaceous acetogenin sylvaticin. Chapter 1: Introduction – Synthetic routes to trans-2,5-substituted tetrahydrofurans This chapter reviews methods for the synthesis of trans-2,5-THFs that have been applied to natural products synthesis. Chapter 2: Results & Discussion – A Novel Route to trans-THFs The rearrangement of activated 2,5-disubstituted cis-THFs is reviewed and is developed into a new synthetic method for the synthesis of trans-THFs. The reaction proceeds via a hydride shift mechanism to form an oxonium ion. Intramolecular reduction by a tethered hydrosilane stereoselectively forms the trans-THF. The mechanism of the rearrangement is investigated with the use of different stereoisomers and a deuterium labelling study. A cross-over study is carried out which confirms the reaction occurs via the proposed hydride shift mechanism. Chapter 3: Introduction – The Annonaceous Acetogenins This chapter introduces the Annonaceous acetogenins, a biologically active class of natural products often found with THF rings in their structure. The three key areas for their synthesis are explored- the synthesis of the THF core, the synthesis of the butenolide ring, and their coupling. Chapter 4: Results & Discussion – The Synthesis of Sylvaticin The Annonaceous acetogenin sylvaticin is introduced, and its isolation in nature and biological activity reviewed. With the aid of a model system study to extend the scope of the reaction, the methodology developed in Chapter 2 is then applied to the synthesis of sylvaticin. The synthesis, the first to be reported, is completed in a total of 19 linear steps starting from commercially available tetradecatetraene. In order to prove the obtained structure is that found in nature, a comprehensive investigation is undertaken using Mosher ester derivatives and the synthesis of its bis-epimer, 4,36-epi,epi sylvaticin. Chapter 5: Experimental Full experimental procedures and characterisation of compounds are reported.
4

Innovative Methods for the Catalyzed Construction of Carbon-Carbon and Carbon-Hydrogen Bonds

Mahoney, Stuart James January 2012 (has links)
The selective transformation of carbon-carbon and carbon-hydrogen bonds represents an attractive approach and rapidly developing frontier in synthesis. Benefits include step and atom economy, as well as the ubiquitous presence in organic molecules. Advances to this exciting realm of synthesis are described in this thesis with an emphasis on the development of catalytic, selective reactions under mild conditions. Additionally some applications of the methodologies are demonstrated. In Chapter 1, the first examples of inter-and intramolecular enantioselective conjugate alkenylations employing organostannanes are reported. A chiral, cationic Rh(I)-diene complex catalyzed the enantioselective conjugate addition of alkenylstannanes to benzylidene Meldrum’s acids in moderate enantiomeric ratios and yields. Notably, the cationic and anhydrous conditions required for the asymmetric alkenylation are complementary to existing protocols employing other alkenylmetals. In Chapter 2, a domino, one-pot formation of tetracyclic ketones from benzylidene Meldrum’s acids using Sc(OTf)3 via a [1,5]-hydride shift/cyclization/Friedel-Crafts acylation sequence is described. Respectable yields were obtained in accord with the ability to convert to the spiro-intermediate, and considering the formation of three new bonds: one C-H and two C-C bonds. An intriguing carbon-carbon bond cleavage was also serendipitously discovered as part of a competing reaction pathway. In Chapter 3, the pursuit of novel C-H bond transformations led to the development of non-carbonyl-stabilized rhodium carbenoid Csp3-H insertions. This methodology enabled the rapid synthesis of N-fused indolines and related complex heterocycles from N-aziridinylimines. By using a rhodium carboxamidate catalyst, competing processes were minimized and C-H insertions were found to proceed in moderate to high yields. Also disclosed is an expedient total synthesis of (±)-cryptaustoline, a dibenzopyrrocoline alkaloid, which highlights the methodology. In Chapter 4, the Lewis acid promoted substitution of Meldrum’s acid discovered during the course of the domino reaction was explored in detail. The protocol transforms unstrained quaternary and tertiary benzylic Csp3-Csp3 bonds into Csp3-X bonds (X = C, N, H) and has even shown to be advantageous with regards to synthetic utility over the use of alternative leaving groups for substitutions at quaternary benzylic centers. This reaction has a broad scope both in terms of suitable substrates and nucleophiles with good to excellent yields obtained (typically >90%).
5

Innovative Methods for the Catalyzed Construction of Carbon-Carbon and Carbon-Hydrogen Bonds

Mahoney, Stuart James January 2012 (has links)
The selective transformation of carbon-carbon and carbon-hydrogen bonds represents an attractive approach and rapidly developing frontier in synthesis. Benefits include step and atom economy, as well as the ubiquitous presence in organic molecules. Advances to this exciting realm of synthesis are described in this thesis with an emphasis on the development of catalytic, selective reactions under mild conditions. Additionally some applications of the methodologies are demonstrated. In Chapter 1, the first examples of inter-and intramolecular enantioselective conjugate alkenylations employing organostannanes are reported. A chiral, cationic Rh(I)-diene complex catalyzed the enantioselective conjugate addition of alkenylstannanes to benzylidene Meldrum’s acids in moderate enantiomeric ratios and yields. Notably, the cationic and anhydrous conditions required for the asymmetric alkenylation are complementary to existing protocols employing other alkenylmetals. In Chapter 2, a domino, one-pot formation of tetracyclic ketones from benzylidene Meldrum’s acids using Sc(OTf)3 via a [1,5]-hydride shift/cyclization/Friedel-Crafts acylation sequence is described. Respectable yields were obtained in accord with the ability to convert to the spiro-intermediate, and considering the formation of three new bonds: one C-H and two C-C bonds. An intriguing carbon-carbon bond cleavage was also serendipitously discovered as part of a competing reaction pathway. In Chapter 3, the pursuit of novel C-H bond transformations led to the development of non-carbonyl-stabilized rhodium carbenoid Csp3-H insertions. This methodology enabled the rapid synthesis of N-fused indolines and related complex heterocycles from N-aziridinylimines. By using a rhodium carboxamidate catalyst, competing processes were minimized and C-H insertions were found to proceed in moderate to high yields. Also disclosed is an expedient total synthesis of (±)-cryptaustoline, a dibenzopyrrocoline alkaloid, which highlights the methodology. In Chapter 4, the Lewis acid promoted substitution of Meldrum’s acid discovered during the course of the domino reaction was explored in detail. The protocol transforms unstrained quaternary and tertiary benzylic Csp3-Csp3 bonds into Csp3-X bonds (X = C, N, H) and has even shown to be advantageous with regards to synthetic utility over the use of alternative leaving groups for substitutions at quaternary benzylic centers. This reaction has a broad scope both in terms of suitable substrates and nucleophiles with good to excellent yields obtained (typically >90%).
6

Nouvelles cétonitrones à partir de bêta-N-hydroxyamino alpha-diazoesters issus de l'addition nucléophile d'alpha-diazoesters sur des nitrones : application à la synthèse de nouveaux iminosucres / Formation of new ketonitrones starting from β-N-hydroxyamino α-diazoesters obtained by nucleophilic addition of α-diazoesters to nitrone : iminosugars synthesis

Lieou kui, Evelyn 21 June 2017 (has links)
Ce travail de thèse décrit la synthèse d’iminosucres bicycliques comportant un carbone quaternaire en jonction de cycle à partir de cétonitrones polyalcoxylées. Dans un premier temps, nous nous sommes intéressés à l’étude de l’addition nucléophile d’a-diazoesters sur des nitrones. Des β-N-hydroxyamino α-diazoesters ont ainsi été obtenus avec succès en employant le bis(triméthylsilyl)amidure de lithium comme base dans le THF à -78 °C. Le traitement de ces hydroxylamines par différents catalyseurs métalliques a conduit à la formation de cétonitrones inédites par migration 1,2 d’hydrure. Le triflate d’argent et le tétrakis acétonitrile hexafluorophosphate de cuivre ont été les catalyseurs les plus performants et ont permis de préparer dix nouvelles cétonitrones cycliques α-alcoxyméthylcarbonylées. Leur réactivité vis-à-vis de divers dipolarophiles a été explorée. Les cycloadduits résultant de la réaction de ces cétonitrones avec l’alcool allylique et l’alcool homoallylique ont été convertis en pyrrolizidines et en indolizidines par réduction de la liaison N-O en employant le molybdène hexacarbonyle. Des modifications fonctionnelles (réduction de la fonction ester et hydrogénolyse des éthers benzyliques) ont permis d’accéder à six nouveaux iminosucres bicycliques comportant un carbone quaternaire en jonction de cycle. L’évaluation biologique de ces molécules en tant qu’inhibiteurs de glycosidases a révélé que parmi elles, deux indolizidines étaient des inhibiteurs puissants et sélectifs d’α-glucosidases. / This manuscript reports the synthesis of bicyclic iminosugars bearing a quaternary carbon at their ring junction from polyalkoxylated ketonitrones. Firstly we have studied the nucleophilic addition of α-diazoesters to nitrones. The expected β-N-hydroxyamino α-diazoesters were successfully obtained by using lithium bis(trimethylsilyl)amide as base in THF at -78 °C. Treatment of these hydroxylamines with different metal catalyst induced 1,2-hydride shift and lead to unprecedented ketonitrones. To promote this transformation, silver triflate and tetrakis acetonitrile copper hexafluorophosphate were the most effective catalyst and ten new α-alkoxymethylcarbonyl cyclic ketonitrones were prepared. Their reactivity as 1,3-dipoles in cycloaddition reactions with various dipolarophiles was investigated. Cycloadducts obtained from the reaction between these ketonitrones and allyl alcohol or homoallyl alcohol were coverted into the corresponding pyrrolizidines or indolizidines by a molybdenum-catalyzed N-O bond cleavage. Subsequent modifications (ester reduction and benzylic ethers hydrogenolysis) gave acess to six new bicyclic iminosugars which are substituted at their ring junction. Among these molecules, the inhibitory activity evaluation revealed two potent and selective inhibitors of α-glucosidases.

Page generated in 0.0329 seconds