• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Theoretical Revisit on 2-Norbornyl Cation

Zuo, Tianming, Huang, Thomas 01 September 2004 (has links)
The 2-norbornyl cation is an old topic in physical-organic chemistry. Whether in classical or non-classical form (partial bridged form) it has been one of the focus of discussion. Currently the experimental data and theoretical calculations favorably support the idea that 2-norbornyl cation is not in the classical form in the stable-ion condition. In this paper, first, we will show that a 3-center-2-electron π-complex is formed by the collapse of 2-norbornyl cation. Further, using different theoretical methods (B3LYP, MP2) with different basis sets (6-31+G, 6-31G(d, p), 6-311G(d, p), 6-311G(2d, p)), we find that there is a trend for the 3-center-2-electron π-complex to approach the Cs symmetry, and this π-complex oscillates within the numerical limits of the perfect Cs symmetrical configuration. The stabilization energies of the π-complex are 13.87 Kcal/mol and 19.47 Kcal/mol by B3LYP/6-31+G and MP2/6-31+G, respectively. Second, our calculations also show that the transition state between 2-norbornyl cation and 3-norbornyl cation is formed by a 3, 2-proton shift, not the generally accepted 3, 2-hydride shift. The activation energy of this 3, 2-proton shift is 10.9 Kcal/mol. Detailed structural changes in the optimization process and the formation of transition state (also a 3-center-2-electron π-complex) between 2-norbornyl cation and 3-norbornyl cation will also be included.

Page generated in 0.6077 seconds