11 |
Développement de réactions énantiosélectives organocatalysées pour la synthèse de molécules cycliques énantioenrichies / Development of asymmetric organocatalyzed reactions for the synthesis of enantioenriched cyclic moleculesGelis, Coralie 23 November 2018 (has links)
Le développement de méthodes de synthèse asymétrique est très important pour l’accès à des molécules à visées thérapeutiques. Dans ce contexte, nous nous sommes intéressés à l’utilisation d’organocatalyseurs chiraux pour la synthèse de molécules cycliques énantioenrichies. Dans une première partie sont présentées des réactions de cycloadditions formelles (3+2), (4+2) et (4+3) à partir d’ènecarbamates ou de diènecarbamates catalysées par des acides phosphoriques chiraux. Ces derniers étant bifonctionnel, ils permettent l’activation des deux partenaires de cycloaddition menant à la synthèse d’indolines, de 2,3-dihydrobenzofuranes, de benzoquinones carbonannulées, de cyclohepta[b]indoles et de tétrahydroquinolines de façon hautement stéréosélective. Dans une seconde partie, nous nous sommes intéressés à l’utilisation de composés d’iode hypervalent chiraux comme organocatalyseurs. En effet, ces composés présentent une réactivité intéressante tout en étant stable et faiblement toxique. Ainsi, leur utilisation dans une réaction de lactonisation à partir de substrats flexibles a permis l’obtention de divers hétérocycles avec de bons résultats. / The development of new enantioselective methodologies is essential for the synthesis of bioactive compounds. In this context, we were interested in using organocatalysts for the synthesis of enantioenriched cyclic molecules. In a first part will be describe chiral phosphoric acid catalyzed (3+2), (4+2) and (4+3) formal cycloadditions using enecarbamate or dienecarbamate. These catalysts are bifunctional and can interact with both cycloaddition partners leading to the synthesis of 2,3-dihydrobenzofuranes, carboannulated benzoquinones, cyclohepta[b]indoles and tetrahydroquinolines with high stereocontrol. In a second phase, we were interested in using chiral hypervalent iodine as organocatalyst. Theses compounds present interesting reactivity while being stable and not very toxic. Their use permits us to develop a lactonisation starting from flexible substrate and led to the synthesis of various heterocycles with good results.
|
12 |
Photocatalyse et organocatalyse comme outils innovants pour la synthèse de molécules complexes / Photocatalysis and organocatalysis as innovative tools for the synthesis of complex moleculesLevitre, Guillaume 08 November 2019 (has links)
Face aux enjeux environnementaux actuels, la catalyse est devenue un outil majeur pour la synthèse de molécules complexes et à visées thérapeutiques. Dans ce contexte, nous nous sommes intéressés au développement de nouvelles méthodes de synthèses innovantes, efficaces, sans métaux ou activées par la lumière visible. Ainsi, mes travaux de thèse ont fait appel à deux thématiques largement étudiées au sein de notre laboratoire que sont la catalyse photorédox et l'organocatalyse. Dans ce manuscrit, la première partie porta sur la conception de réactions multicomposants photocatalysées pour la synthèse de structures trifluorométhylées avec de bons rendements. La partie suivante a été consacrée au développement et à l’évaluation de nouveaux photocatalyseurs supportés, robustes et recyclables. La troisième partie présenta l’élaboration de réactions de cyloadditions formelles (4+3) et (4+2), catalysées aux acides phosphoriques chiraux pour une synthèse efficace, énantiosélective et diastéréosélective de cyclohepta[b]indoles et de spiroindolines. Dans la quatrième partie, une stratégie combinant l’organocatalyse asymétrique et la photocatalyse pour la synthèse de tryptamines α-substituées β-aminées potentiellement biologiquement actives a été décrite. Enfin, l’élaboration de nouveaux composés d’iode hypervalent chiraux et leur évaluation en tant qu’organocatalyseurs fût rapportées dans la dernière partie de ce manuscrit de thèse. / In front of current environmental challenges, catalysis has become a major tool for the synthesis of complex and therapeutic molecules. In this context, we have focused on the development of new synthesis methods that are innovative, efficient, metal-free or activated by visible light. Thus, my thesis work has involved two themes that have been widely studied in our team: photoredox catalysis and organocatalysis. In this manuscript, the first part focused on the conception of photocatalyzed multicomponent reactions for the synthesis of trifluoromethylated structures with good yields. The following section devoted to the design and evaluation of new supported, robust and recyclable photocatalysts. The third part presented the formulation of formal (4+3) and (4+2) cyloaddition reactions, catalyzed with chiral phosphoric acids for an effective, enantio- and diastereo-selective synthesis of cyclohepta[b]indoles and spiroindolines. In the fourth part, a strategy combining asymmetric organocatalysis and photocatalysis for the synthesis of potentially biologically active α-substituted β-amino tryptamines was described. Finally, the elaboration of new chiral hypervalent iodine compounds and their evaluation as organocatalysts was reported in the last part of this thesis manuscript.
|
13 |
Sels d’imidazolium avec des anions catalytiques : vers le développement de nouveaux catalyseurs bio-hybrides actifs en milieu liquide ioniqueGauchot, Vincent 02 1900 (has links)
Les liquides ioniques connaissent depuis quelques décennies un essor particulier en raison de leurs nombreuses propriétés physico-chimiques intéressantes, telles qu’une faible pression de vapeur saturante, une viscosité limitée, une faible miscibilité avec la plupart des solvants communs, ou encore des propriétés d’agencement supramoléculaire, qui en font des outils puissants dans de nombreux domaines de la chimie. Les sels d’imidazolium représentent la plus grande famille de liquides ioniques à ce jour. Leur modulabilité leur permet d’être dérivés pour de nombreuses applications spécifiques, notamment en synthèse organique, où ils sont utilisés majoritairement comme solvants, et plus récemment comme catalyseurs. Les travaux présentés dans cette thèse se concentrent sur leur utilisation en synthèse organique, à la fois comme solvants et principalement comme catalyseurs chiraux, catalyseurs pour lesquels l’anion du sel est l’espèce catalytique, permettant d’ajouter de la flexibilité et de la mobilité au système. En tirant parti de la tolérance des liquides ioniques envers la majorité des macromolécules naturelles, l’objectif principal des travaux présentés dans cette thèse est le développement d’un nouveau type de catalyseur bio-hybride reposant sur l’encapsulation d’un sel d’imidazolium dans une protéine. Par le biais de la technologie biotine-avidine, l’inclusion supramoléculaire de sels d’imidazolium biotinylés portant des contre-anions catalytiques dans l’avidine a été réalisée et exploitée en catalyse.
Dans un premier temps, le développement et l’étude de deux sels de 1-butyl-3-méthylimidazolium possédant des anions chiraux dérivés de la trans-4-hydroxy-L-proline sont rapportés, ainsi que leur comportement dans des réactions énantiosélectives d’aldol et d’addition de Michael. Ces types de composés se sont révélés actifs et performants en milieu liquide ionique.
Dans un second temps, la préparation de sels d’imidazolium dont le cation est biotinylé et portant un contre-anion achiral, a été réalisée. Le comportement de l’avidine en milieu liquide ionique et son apport en termes de chiralité sur le système bio-hybride ont été étudiés. Les résultats montrent le rôle crucial des liquides ioniques sur la conformation de la protéine et l’efficacité du catalyseur pour des réactions d’aldol.
Dans un dernier temps, l’influence de la structure du cation et de l’anion sur le système a été étudiée. Différents espaceurs ont été introduits successivement dans les squelettes cationiques et anioniques des sels d’imidazolium biotinylés. Dans le cas du cation, les résultats ne révèlent aucune influence majeure sur l’efficacité du catalyseur. La structure de l’anion se montre cependant beaucoup plus importante : la préparation de différents catalyseurs bio-hybrides possédant des anions aux propriétés physico-chimiques différentes a permis d’obtenir de plus amples informations sur le mode de fonctionnement du système bio-hybride et de la coopérativité entre l’avidine et l’anion du sel d’imidazolium.La nature ionique de la liaison cation-anion offrant une liberté de mouvement accrue à l’anion dans la protéine, la tolérance à différents substrats a également été abordée après optimisation du système. / Ionic liquids have gained a growing interest due to many interesting properties, such as low vapor pressure, reasonably low viscosity, poor miscibility with common organic solvents, and also exhibit supramolecular organization in solution, which make them interesting tools for several fields of applications in chemistry. As of today, imidazolium salts make up the largest family of ionic liquids. Their modulability allows them to be used for a wide range of applications, notably in organic chemistry, where they are mainly used as solvents, but also more recently as actual catalysts. The work presented in this thesis focuses on their use as solvents and chiral catalysts, in which the catalytic species is the anion of the imidazolium salts, adding more flexibility and mobility to the whole system. Taking advantage from the tolerance of ionic liquids toward biological macromolecules, the main goal of this work is the design and development of a new type of bio-hybrid catalyst based on the encapsulation of an imidazolium salt inside the cavity of a host protein. Based on the biotin-avidin technology, the supramolecular ligation of biotinylated imidazolium salts inside avidin, bearing catalytic counter-anion, is discussed.
As a first step, the development and studies of two 1-butyl-3-methylimidazolium-based salts, bearing trans-4-hydroxy-L-proline-derived anions are reported. Their use for asymmetric catalysis in ionic liquids media is disclosed, both for the aldol and Michael additions. Results show that these compounds are viable and efficient organocatalysts in ionic liquids.
Subsequently, the preparation of biotinylated imidazolium salts, bearing a racemic pyrrolidine-based counter-anion is reported. Avidin behaviour in ionic liquid media, as well as its contribution for the stereocontrol for the whole bio-hybrid system, is assessed. Results highlight the critical role of the ionic liquid reaction medium on the protein’s conformation, and thus the efficiency of the bio-hybrid catalyst towards aldol reactions.
Finally, the influence of the structure of the cation and anion on the catalytic properties of the biohybrid system were investigated. Several spacers were inserted successively both in the cation and anion structures of the biotinylated imidazolium salts. Regarding the cation modifications, results show no major influence on the bio-hybrid catalyst behaviour. However, modifying the anion structure revealed the much more important role of the anion towards catalysis. Preparation of different anions, each bearing a different spacer, granting them different physico-chemical properties, gives rise to further information regarding the behaviour of the bio-hybrid catalyst, and possible cooperativity between avidin and the imidazolium salt.
The ionic character of the interaction between the anion and the cation, allowing a greater freedom of movement of the anion inside the avidin’s cavity, and the tolerance of the bio-hybrid system to different substrates were studied.
|
14 |
Design, synthesis and biological evaluation of new platelet aggregation inhibitors and novel methodologies for the preparation of CF₂R containing molecules / Synthèse et évaluation biologique de nouveaux inhibiteurs de l'agrégation plaquettaire et nouvelles méthodologies pour la préparation de molécules contenant des motifs CF₂RKhalaf, Ali 21 February 2013 (has links)
Dans la première partie nous décrivons la synthèse et l'évaluation biologique de nouveaux inhibiteurs de l'agrégation plaquettaire, composés dont la structure a été établie en partant du 12-HETE et du 13-HODE. Dans la seconde partie nous développons de nouvelles méthodologies pour la préparation de molécules contenant des motifs CF₂R. Tout d'abord une stratégie très flexible a été mise au point pour la préparation de composés gem-difluorobisaryliques et de leurs analogues hétéroaromatiques. Elle est basée sur l'emploi d'intermédiaires gem-difluoropropargyliques faciles d'accès. Par une séquence de Diels-alder-aromatisation on obtient les molécules cibles de la première série. Pour la seconde, des réactions de cycloaddition dipolaire 1,3 ont été utilisées. A partir de ces intermédiaires, des chimiothèques ciblées de molécules fluorées ont été préparées. Nous nous sommes intéressés ensuite à la synthèse de composés fluorés fonctionnalisés et chiraux à travers des réactions d'organocatalyse asymétrique. A partir d'énals gem-difluorés des réactions de Diels-Alder et des additions 1,4 asymétriques ont été réalisées avec succès. / The first part of the thesis deals with the synthesis and biological evaluation of new platelets aggregation inhibitors, based on 12-HETE, 13-HODE and their analogues. In the second part we are interested in novel methodologies for the preparation of CF₂-containing molecules : First, a flexible strategy for the synthesis of gem-difluoro-bisarylic derivatives and heteroaromatic analogues was designed based on the easy synthesis and the reactivity of gem-difluoro propargylic intermediates, which by Diels-Alder cycloaddition and 1,3-dipolar cycloadditions afforded respectively the bisarylic and mixed arylic heteroarylic scaffolds. In addition, two small libraries were constructed around a bisarylic scaffold as representative examples. Second, we were interested in the synthesis of optically active functionalized molecules containing a gem-difluoro group, using asymmetric organocatalysis protocols. After preparation of the gem-difluoro enals, from their difluoropropargylic precursors, asymmetric organocalytic Diels-Alder cycloaddition and 1,4-conjugated additions were successfully performed.
|
15 |
A. Asymmetrische Organokatalyse mit kleinen Peptiden und neuen bifunktionellen organischen Verbindungen. B. Ansätze zur asymmetrischen Produktkatalyse und zur Synthese der Naturstoffhybride / A. Asymmetric Organocatalysis with small Peptides and new bifunctional organic compounds. B. First steps in the asymmetric product catalysis and in the synthesis of natural product hybridsWei, Shengwei 09 July 2007 (has links)
No description available.
|
16 |
Controlling Stereochemistry at the Quaternary Center using Bifunctional (THIO)Urea CatalysisManna, Madhu Sudan January 2015 (has links) (PDF)
The thesis entitled “Controlling Stereochemistry at the Quaternary Center Using Bifunctional (Thio)urea Catalysis” is divided into five chapters.
Chapter 1: Catalytic Enantioselective Construction of Quaternary Stereocenters through Direct Vinylogous Michael Addition of Deconjugated Butenolides to Nitroolefins
The direct use of deconjugated butenolides in asymmetric C–C bond forming reaction is a powerful but challenging task because of the additional problem of regioselectivity along with the issues of diastereo- and enantioselectivity. In this chapter, a direct asymmetric vinylogous Michael addition of deconjugated butenolides to nitroolefins has been demonstrated for the construction of quaternary stereocenter at the γ-position of butenolides. A novel thiourea-based bifunctional organocatalyst, containing two elements of chirality, was synthesized starting from commercially available quinine and (S)-tert-leucine. Remarkably, the sense of stereoinduction in this process is dominated by the tert-leucine segment of the catalyst. Synthetically versatile & highly functionalized γ-butenolides with contiguous quaternary and tertiary stereocenters were synthesized stereoselectively. The reaction was found to be general and a wide range of nitroolefins, with both electron-rich and electron-deficient substituents, underwent smooth reaction under these mild conditions. Similarly, deconjugated butenolides, having various substituents at the γ-position were well tolerated under these reaction conditions and the products were obtained in excellent yields and with uniformly high diastereo- and enantioselectivities.
Reference: Manna, M. S.; Kumar, V.; Mukherjee, S. Chem. Commun. 2012, 48, 5193–5195.
Chapter 2: Catalytic Asymmetric Direct Vinylogous Michael Addition of Deconjugated Butenolides to Maleimides for the Construction of Quaternary Stereogenic Center
In this chapter, a mild and operationally simple protocol for the direct vinylogous Michael addition of deconjugated butenolides to maleimides has been illustrated. Using bifunctional tertiary amino thiourea organocatalyst, derived from a ‘matched’ combination of trans-(1R,2R)-diaminocyclohexane (DACH) and (S)-tert-leucine, the Michael adducts were obtained in excellent yields and with good to high diastereoselectivities and outstanding enantioselectivities. Application of the corresponding diastereomeric catalyst indicated the
dominance of the ‘DACH’ unit over the chiral side chain in determining the sense of stereoinduction. The practicality of this protocol is illustrated by substantial low catalyst loading (down to 5 mol%) and one-pot catalyst recycling. Based on the X-ray structure of the catalyst and observed stereochemistry of the Michael adduct, a stereochemical model is proposed which was further supported by additional experiment.
Reference: Manna, M. S.; Mukherjee, S. Chem.–Eur. J. 2012, 18, 15277–15282.
Chapter 3: Enantioselective Desymmetrization of Cyclopentenedione through Direct Catalytic Vinylogous Michael Addition of Deconjugated Butenolides
Five-membered carbocycles containing one or more stereogenic centers on the ring are privileged structural motifs found in many biologically active natural and non-natural compounds. Among various methods for accessing these enantioenriched carbocyclic frameworks, desymmetrization of prochiral or meso-compounds through catalytic enantioselective transformations represents a powerful strategy. The biggest advantage of such asymmetric desymmetrization reactions lies in their ability in controlling stereochemistry remote from the reaction site. This chapter deals with a highly efficient desymmetrization protocol for 2,2-disubstituted cyclopentene-1,3-diones via direct vinylogous nucleophilic addition of deconjugated butenolides with the help of a tertiary amino thiourea bifunctional catalyst. In contrast to the existing desymmetrization protocols, this method represents a unique example where quaternary stereocenter is generated not only within the ring but also outside the cyclopentane ring. Densely functionalized products are obtained in excellent yields and with outstanding diastereo- and enantioselectivities. The robustness screening indicated that the reaction is highly tolerant to a variety of competing electrophiles and nucleophiles. The remarkable influence of the secondary catalyst site on the enantioselectivity points towards an intriguing mechanistic scenario. To the best of our knowledge, this is the first time such an effect is observed in the context of asymmetric catalysis.
Reference: (1) Manna, M. S.; Mukherjee, S. Chem. Sci. 2014, 5, 1627–1633.
(2) Manna, M. S.; Mukherjee, S. Org. Biomol. Chem. 2015, 13, 18–24. (Perspective)
Chapter 4: Enantioselective Desymmetrization of Cyclopentenediones through Organocatalytic C(sp2)–H Alkylation
Organic compounds are characterized by the presence of various C–H bonds. Functionalization of a specific C–H bond in a molecule with a selected atom or group are among the most straightforward and desirable synthetic transformations in organic chemistry. In this chapter, a simple protocol for the direct alkylation of olefinic C(sp2)–H bond has been developed, not only enantioselectively using an organocatalyst but more importantly without using any directing group. This alkylative desymmetrization of prochiral 2,2-disubstituted cyclopentene-1,3-diones is catalyzed by a dihydroquinine-based bifunctional urea derivative. Using easily accessible, inexpensive and air-stable nitroalkanes as the alkylating agent, this C(sp2)−H alkylation represents a near-ideal desymmetrization and delivers products containing an all-carbon quaternary stereogenic center in good to excellent yields and with high enantioselectivities. The mild reaction conditions allow for the introduction of various functionalized alkyl groups. The possibility of a second alkylation and its applications has also been demonstrated. This protocol is the first example of the use of nitroalkane as the alkyl source in an enantioselective transformation. It is expected that, these findings would have broader consequences and applications to other alkylative and related transformations.
Reference: Manna, M. S.; Mukherjee, S. J. Am. Chem. Soc. 2015, 137, 130–133. (Highlighted in Synform 2015, 67–70)
Chapter 5: Enantioselective Desymmetrization of Cyclopentenediones through Organocatalytic Formal C(sp2)–H Vinylation
The development of catalytic enantioselective C(sp2)–H vinylation reactions remained relatively underexplored for a long time because of various challenges associated with it. As C(sp2)–H functionalization reactions do not generate any stereocenter at the reaction site, development of enantioselective C(sp2)−H functionalization must rely on desymmetrization of prochiral or meso-substrates. More important issue is the identification of a suitable directing group which can efficiently control the regioselectivity during the activation of C(sp2)−H bond. In this chapter, an efficient formal C(sp2)−H vinylation of prochiral 2,2-disubstituted cyclopentene-1,3-dione is developed without using any directing group. This formal C(sp2)−H vinylation of 2,2-disubstituted cyclopentene-1,3-dione is realized using a two-step operation: catalytic enantioselective Michael addition of deconjugated butenolides followed by a base mediated decarboxylation. The vinylated products, containing a remote all-carbon quaternary stereogenic center, are obtained in good yields and with good to high enantioselectivities. Synthetic utility of this protocol is demonstrated by converting the resulting chiral electron-deficient diene into various important building blocks. Significant erosion in enantioselectivity during the decarboxylation process was explained by a plausible mechanism, which was further supported by control experiments.
Reference: Manna, M. S.; Sarkar, R.; Mukherjee, S. manuscript under preparation.
|
Page generated in 0.0606 seconds