• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre ideais primos anexados de módulos

Menezes, Clemerson Oliveira da Silva 09 March 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-11T12:32:04Z No. of bitstreams: 1 arquivototal.pdf: 604214 bytes, checksum: ba88d16062ebf0bc144fe2cd43359547 (MD5) / Made available in DSpace on 2017-08-11T12:32:05Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 604214 bytes, checksum: ba88d16062ebf0bc144fe2cd43359547 (MD5) Previous issue date: 2016-03-09 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The connection between the theory of local cohomology and the theory of secondary representation and attached prime ideals is exposed in the work of R. Y. Sharp and I. G. Macdonald and it displayed itself as very prolific since the statement of various conditions of vanishing and non-vanishing for some local cohomology modules. In this work we show that, in some conditions, the (generalised) Matlis dual DR (M ) of a module M over a semi-local ring R is Artinian, hence representable. Under the same conditions we show that AttR (DR (M )) = Ass(M ). We also describe the set of attached primes of co-localisations of modules and of some local cohomology modules. The use for the latter is, as an example, to describe the set of attached primes of the top local cohomology module Ha dim(R)(R) as the set of prime ideals of R which satisfy the condition of Lichtenbaum–Hartshorne Vanishing Theorem. / A conexão entre a teoria de cohomologia local e a teoria de representação secundária e ideais primos anexados foi exposta nos trabalhos de R. Y. Sharp e I. G. Macdonald e mostrou-se bastante prolı́fica, uma vez que foram estabelecidas condições de anulamento e não anulamento de determinados módulos de cohomologia local. Neste trabalho, provamos que, para determinadas condições, o dual de Matlis (generalizado) de um módulo M , DR (M ), sobre um anel semi-local R, é Artiniano e, portanto, representável. Sob estas condições, mostramos que AttR DR (M ) = AssM . Além disso, descrevemos os conjuntos de primos anexados de alguns módulos de cohomologia local e módulos via co-localização. Por exemplo, mostramos que o conjunto dos ideais primos anexados do módulo de cohomologia local Ha dim(R) (R) é justamente o conjunto de ideais primos de R que satisfazem a condição do Teorema de Anulamento de Lichtenbaum–Hartshorne.

Page generated in 0.054 seconds