1 |
Measurement of neutrino oscillations in atmospheric neutrinos with the IceCube DeepCore detectorGarza, Juan Pablo Yáñez 15 August 2014 (has links)
Neutrinooszillationen sind ein sehr aktives Forschungsfeld. In den letzten Jahrzehnten haben viele Experimente das Phänomen untersucht und sind inzwischen zu Präazisionsmessungen vorangeschritten. Mit seiner Niederenergieerweiterung DeepCore kann das IceCube-Experiment zu diesem Forschungsfeld beitragen. IceCube ist ein 1 km^3 großes Tscherenkow-Neutrino-Teleskop, welches das tiefe, antarktische Eis des Südpols als optisches Medium nutzt. DeepCore ist eine Erweiterung mit dichterer Instrumentierung im unteren Teil des IceCube-Teleskops. Diese dichte Instrumentierung ermöglicht den Nachweis von Neutrinos mit Energien ab einer Energieschwelle von etwa 10 GeV. Jedes Jahr werden Tausende von atmosphärischen Neutrinos oberhalb dieser Schwelle in DeepCore detektiert. Eine Bestimmung der Energie der Neutrinos und des durch sie zurückgelegten Weges durch die Erde ermöglicht die Messung von Neutrinooszillationen. In dieser Arbeit werden zunächst die Möglichkeiten von DeepCore diskutiert, Oszillationen auf unterschiedliche Weise zu messen. Das Verschwinden von Myon-Neutrinos wird als erfolgsversprechender Prozess ausgewählt. Darauf folgt die Beschreibung einer Methode zur Identifizierung von Tscherenkow-Photonen, welche detektiert wurden, bevor sie gestreut wurden -sogenannte- direkte Photonen. Mit Hilfe dieser Photonen kann der Zenitwinkel der Myon-Neutrinos bestimmmt werden. Auch die Energie der Neutrinos wird rekonstruiert. In den Jahren 2011 und 2012 wurden innerhalb von 343 Tagen mit dieser Analyse 1487 Neutrinokandidaten mit Energien zwischen 7 GeV und 100 GeV in DeepCore gefunden. Vergleicht man diese Zahl mit der erwarteten Zahl vom atmosphärischen Neutrinofluss ohne Oszillationen, so ergibt sich ein Defizit von etwa 500 Ereignissen. Die Osziallationsparameter, die die Daten am besten beschreiben, sind im Einklang mit den Parametern, die von anderen Experimenten veröffentlicht wurden. / The study of neutrino oscillations is an active field of research. During the last couple of decades many experiments have measured the effects of oscillations, pushing the field from the discovery stage towards an era of precision and deeper understanding of the phenomenon. The IceCube Neutrino Observatory, with its low energy subarray, DeepCore, has the possibility of contributing to this field. IceCube is a 1 km^3 ice Cherenkov neutrino telescope buried deep in the Antarctic glacier. DeepCore, a region of denser instrumentation in the lower center of IceCube, permits the detection of neutrinos with energies as low as 10 GeV. Every year, thousands of atmospheric neutrinos around these energies leave a strong signature in DeepCore. Due to their energy and the distance they travel before being detected, these neutrinos can be used to measure the phenomenon of oscillations. This work starts with a study of the potential of IceCube DeepCore to measure neutrino oscillations in different channels, from which the disappearance of muon neutrinos is chosen to move forward. It continues by describing a novel method for identifying Cherenkov photons that traveled without being scattered until detected direct photons. These photons are used to reconstruct the incoming zenith angle of muon neutrinos. The total energy of the interacting neutrino is also estimated. In data taken in 343 days during 2011-2012, 1487 neutrino candidates with an energy between 7 GeV and 100 GeV are found inside the DeepCore volume. Compared to the expectation from the atmospheric neutrino flux without oscillations, this corresponds to a deficit of about 500 muon neutrino events. The oscillation parameters that describe the data best are in agreement with the results reported by other experiments. The method and tools presented allow DeepCore to reach comparable precision with the current best results of on-going experiments once five years of data are collected.
|
2 |
Measurement of atmospheric neutrino oscillations and search for sterile neutrino mixing with IceCube DeepCoreTerliuk, Andrii 20 July 2018 (has links)
Neutrinooszillation, ein Phänomen, das den Neutrino-Flavour nach ihrer Ausbreitung durch den Weltraum verändern kann, ist ein Beweis für nicht-verschwindende Neutrinomassen und ein Hinweis auf eine neue Physik außerhalb des Standardmodells. Diese Arbeit präsentiert die erste Messung zu atmosphärischen Neutrinooszillationen, die sechs Jahre zwischen Mai 2011 und Mai 2017 des IceCube DeepCore Experiment umfasst. Sie erweitert die bisher verfügbare Ereignisauswahl um eine neue Ereignissignatur und einen großeren Energiebereich. Diese Arbeit beschreibt die Methoden, die für die Simulationen der Wechselwirkungen der Neutrinos, die Ereignisauswahl, die Rekonstruktion und die statistische Behandlung von Messdaten und systematischen Messunsicherheiten benutzt werden. Die beste Abschätzung für die Neutrino-Mischungsparameter ist $\Delta m^2_{32} = 2.54^{+0.11}_{-0.12}\cdot 10^{-3}$~eV$^2$ und $\sin^2 \theta_{23} = 0.51\pm0.05$ (68\% C.L.) und gehört zurzeit zu den präzisesten Messungen atmosphärischer Neutrinos.
Darüber hinaus wird in dieser Arbeit das Standard-Drei-Flavour-Modell überprüft, indem ein steriles Neutrino mit einer Masse in der Größenordnung von 1 eV eingeführt wird. Die Suche nach Effekten steriler Neutrinos auf atmosphärischen Neutrinooszillationen wird auf drei Jahren Daten, genommen zwischen Mai 2011 und Mai 2014, durchgeführt. Die Ergebnisse stimmen mit dem Standard-Modell der Drei-Neutrino-Oszillation überein, was zu den Obergrenzen für sterilen Neutrino-Mischungsparameter $|U_{\mu4}|^2<0.11$ und $|U_{\tau4}|^2<0.15$ (90\% C.L.) für $\Delta m^2_{41}=1$~eV$^2$ führt. Dieser Ergebnis ist derzeit die stringenste Obergrenze für $|U_{\tau4}|^2$. / Neutrino oscillations, a phenomenon that can change the flavour of neutrinos after their propagation through space, are a proof of non-zero neutrino masses and are an indication of new physics beyond the Standard Model. This work presents the first measurement of the atmospheric neutrino oscillations using six years of IceCube DeepCore data taken between May 2011 and May 2017. It extends the previously available event selection to include new event signatures and to use an extended energy range. This work discusses the techniques used for simulation of neutrino interactions, event selection, reconstruction, and the statistical treatment of data and systematic uncertainties. The best estimates for the neutrino mixing parameters are $\Delta m^2_{32} = 2.54^{+0.11}_{-0.12}\cdot 10^{-3}$~eV$^2$ and $\sin^2 \theta_{23} = 0.51\pm0.05$ (68\% C.L.), which are currently among the most precise measurements obtained with atmospheric neutrinos.
In addition, this work tests the standard three-flavour paradigm by introducing one sterile neutrino with a mass on the order of 1~eV. The search for sterile neutrino effects in atmospheric neutrino oscillations is performed with three years of data taken between May 2011 and May 2014. The results are consistent with the standard three-neutrino oscillation picture, leading to limits on the allowed sterile neutrino mixing of $|U_{\mu4}|^2<0.11$ and $|U_{\tau4}|^2<0.15$ (90\% C.L.) for $\Delta m^2_{41}=1$~eV$^2$. Currently, the limit for $|U_{\tau4}|^2$ is the most stringent in the World.
|
Page generated in 0.0665 seconds