1 |
Effects of absorbing aerosols in cloudy skies: a satellite study over the Atlantic OceanPeters, Karsten, Quaas, Johannes, Bellouin, Nicolas January 2011 (has links)
We present a method for deriving the radiative effects of absorbing aerosols in cloudy scenes from satellite retrievals only. We use data of 2005–2007 from various passive sensors aboard satellites of the “A-Train” constellation. The study area is restricted to the tropical- and subtropical
Atlantic Ocean. To identify the dependence of the local planetary albedo in cloudy scenes on cloud liquid water path and aerosol optical depth (AOD), we perform a multiple linear regression. The OMI UV-Aerosolindex serves as an indicator for absorbing-aerosol presence. In our method, the
aerosol influences the local planetary albedo through direct-
(scattering and absorption) and indirect (Twomey) aerosol effects.
We find an increase of the local planetary albedo (LPA) with increasing AOD of mostly scattering aerosol and a decrease of the LPA with increasing AOD of mostly absorbing aerosol. These results allow us to derive the direct aerosol effect of absorbing aerosols in cloudy scenes, with the effect of cloudy-scene aerosol absorption in the tropical- and subtropical Atlantic contributing (+21.2±11.1)×10−3 Wm−2 to the
global top of the atmosphere radiative forcing.
|
2 |
Evaluating statistical cloud schemes: what can we gain from ground-based remote sensing?Grützun, Verena, Quaas, Johannes, Morcrette, Cyril J., Ament, Felix January 2013 (has links)
Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution
three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based remote sensing such as lidar, microwave, and radar to evaluate prognostic distribution moments using the “perfect model approach.” This means that we employ a high-resolution weather model as virtual reality and retrieve full three-dimensional atmospheric quantities and virtual ground-based observations. We then use statistics from the virtual observation to validate the modeled 3-D statistics. Since the data are entirely consistent, any discrepancy occurring is due to the method. Focusing on total water mixing ratio, we find that the mean ratio can be evaluated decently but that it strongly depends on the meteorological conditions as to whether the variance and skewness are reliable. Using
some simple schematic description of different synoptic conditions, we show how statistics obtained from point or line measurements can be poor at representing the full three-dimensional distribution of water in the atmosphere. We argue that a careful analysis of measurement data and detailed knowledge of the meteorological situation is
necessary to judge whether we can use the data for an evaluation of higher moments of the humidity distribution used by a statistical cloud scheme.
|
3 |
Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAMPeters, Karsten, Stier, Philip, Quaas, Johannes, Graßl, Hartmut January 2012 (has links)
In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model’s sensitivity towards uncertainties associated with the emission parameterisation as well as with
the shipping emissions themselves. Sensitivity experiments
are designed to investigate (i) the uncertainty in the size distribution
of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from
shipping emissions to range from −0.32±0.01Wm−2 to −0.07±0.01Wm−2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting
just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.
|
4 |
Assessing large-scale weekly cycles in meteorological variablesSanchez-Lorenzo, Arturo, Laux, Patrick, Hendricks-Franssen, Harrie-Jan, Calbo, Josep, Vogl, Stefanie, Georgoulias, Aristeidis, Quaas, Johannes January 2012 (has links)
Several studies have claimed to have found significant weekly cycles of meteorological variables appearing over large domains, which can hardly be related to urban effects exclusively. Nevertheless, there is still an ongoing scientific debate whether these large-scale weekly cycles exist
or not, and some other studies fail to reproduce them with statistical significance. In addition to the lack of the positive proof for the existence of these cycles, their possible physical explanations have been controversially discussed during the last years. In this work we review the main results about this topic published during the recent two decades, including a summary of the existence or non-existence of significant
weekly weather cycles across different regions of the world, mainly over the US, Europe and Asia. In addition, some shortcomings of common statistical methods for analyzing weekly cycles are listed. Finally, a brief summary of supposed causes of the weekly cycles, focusing on the
aerosol-cloud-radiation interactions and their impact on meteorological
variables as a result of the weekly cycles of anthropogenic activities, and possible directions for future research, is presented.
|
5 |
The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representationsZhang, Kai, O''Donnell, Declan, Kazil, Jan, Stier, Philip, Kinne, Stefan, Lohmann, Ulrike, Ferrachat, Sylvaine, Croft, Betty, Quaas, Johannes, Wan, Hui, Rast, Sebastian, Feichter, Johann January 2012 (has links)
This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols,
modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model’s capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation. Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced k-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon,
particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker incloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6
to 7.7) between accumulation mode and coarse mode emission
fluxes of aerosol number concentration. This leads to a general increase in the number concentration of smaller particles over the oceans in HAM2, as reflected by the higher Ångström parameters. Evaluation against observation reveals that in terms of model performance, main improvements in HAM2 include a marked decrease of the systematic negative bias in the absorption aerosol optical depth, as well as smaller biases over the oceans in Ångström parameter and in the accumulation
mode number concentration. The simulated geographical distribution of aerosol optical depth (AOD) is better correlated with the MODIS data, while the surface aerosol mass concentrations are very similar to those in the old version. The total aerosol water content in HAM2 is considerably closer to the multi-model average from Phase I of the AeroCom
intercomparison project. Model deficiencies that require further efforts in the future include (i) positive biases in AOD over the ocean, (ii) negative biases in AOD and aerosol mass concentration in high-latitude regions, and (iii) negative biases in particle number concentration, especially that
of the Aitken mode, in the lower troposphere in heavily polluted
regions.
|
6 |
Soot microphysical effects on liquid clouds, a multi-model investigationKoch, Dorothy, Balkanski, Yves, Bauer, Susanne E., Easter, Richard C., Ferrachat, Sylvaine, Ghan, Steven J., Hoose, Corinna, Iversen, Trond, Kirkevåg, Alf, Kristjansson, Jon Egill, Liu, Xiaohong, Lohmann, Ulrike, Menon, Surabi, Quaas, Johannes, Schulz, Michael, Seland, Øyvind, Takemura, Toshihiko, Yan, N. January 2011 (has links)
We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments;
four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is −0.11Wm−2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models
calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models <±0.06Wm−2 from clouds. The results are subject to the caveats that variability among models, and regional and interrannual variability for each model, are large.
This comparison together with previously published results stresses the need to further constrain aerosol microphysical schemes. The non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes.
|
7 |
Aerosol nucleation and its role for clouds and Earth’s radiative forcing in the aerosol-climate model ECHAM5-HAMKazil, Jan, Stier, Philip, Zhang, Kai, Quaas, Johannes, Kinne, Stefan, O''Donnell, D., Rast, Sebastian, Esch, Monika, Ferrachat, Sylvaine, Lohmann, Ulrike, Feichter, Johann January 2010 (has links)
Nucleation from the gas phase is an important source of aerosol particles in the Earth’s atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosolclimate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms
for clouds and the Earth’s radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual
nucleation processes to total absorbed solar short-wave radiation
via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are −1.15 W/m2 for charged H2SO4/H2O nucleation, −0.235 W/m2 for cluster activation, and −0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is −2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks
and interactions in the model. Aerosol nucleation contributes over the oceans with −2.18 W/m2 to total absorbed solar short-wave radiation, compared to −0.37 W/m2 over land.
We explain the higher effect of aerosol nucleation on Earth’s radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation
proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.
|
8 |
Arctic clouds and surface radiation: a critical comparison of satellite retrievals and the ERA-Interim reanalysisZygmuntowska, Marta, Mauritsen, Thorsten, Quaas, Johannes, Kaleschke, Lars January 2012 (has links)
Clouds regulate the Earth’s radiation budget, both by reflecting part of the incoming sunlight leading to cooling and by absorbing and emitting infrared radiation which tends to have a warming effect. Globally averaged, at the top of the atmosphere the cloud radiative effect is to cool the climate, while at the Arctic surface, clouds are thought to be warming. Here we compare a passive instrument, the AVHRR-based
retrieval from CM-SAF, with recently launched active instruments
onboard CloudSat and CALIPSO and the widely used ERA-Interim reanalysis. We find that in particular in winter months the three data sets differ significantly. While passive satellite instruments have serious difficulties, detecting only half the cloudiness of the modeled clouds in the reanalysis, the active instruments are in between. In summer, the
two satellite products agree having monthly means of 70–80 percent, but the reanalysis are approximately ten percent higher. The monthly mean long- and shortwave components of the surface cloud radiative effect obtained from the ERAInterim reanalysis are about twice that calculated on the basis of CloudSat’s radar-only retrievals, while ground based measurements from SHEBA are in between. We discuss these
differences in terms of instrument-, retrieval- and reanalysis
characteristics, which differ substantially between the analyzed
datasets.
|
9 |
How can aerosols affect the Asian summer monsoon?: assessment during three consecutive pre-monsoon seasons from CALIPSOsatellite dataKuhlmann, Julian, Quaas, Johannes January 2010 (has links)
The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during premonsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and the Arabian Sea. CALIPSO lidar satellite data, providing vertically resolved images of aerosols, shows aerosol concentrations to be highest in the lower 5 km of
the atmosphere with only little amounts reaching the Tibetan Plateau altitude. Using a radiative transfer model we find that aerosol plumes reduce shortwave radiation throughout the Monsoon region in the seasonal average by between 20 and 30 W/m2. Peak shortwave heating in the lower troposphere reaches 0.2 K/day. In higher layers this shortwave heating is partly balanced by longwave cooling. Although
high-albedo surfaces, such as deserts or the Tibetan Plateau,
increase the shortwave heating by around 10%, the overall effect is strongest close to the aerosol sources. A strong elevated heating which could influence large-scale monsoonal circulations as suggested by previous studies is not found.
|
10 |
Total aerosol effect: radiative forcing or radiative flux perturbation?Lohmann, Ulrike, Rotstayn, Leon, Storelvmo, Trude, Jones, Andrew, Menon, Surabi, Quaas, Johannes, Ekman, Annica M. L., Koch, Dorothy, Ruedy, Reto A. January 2010 (has links)
Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of precipitation
formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical properties, a quantification of the aerosol forcings in the traditional way is difficult to
define properly. Here we argue that fast feedbacks should be included because they act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations
(RFP), that takes these fast feedbacks and interactions into account. Based on our results, we recommend RFP as a valid option to compare different forcing agents, and to compare the effects of particular forcing agents in different models.
|
Page generated in 0.061 seconds