• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 1
  • 1
  • Tagged with
  • 146
  • 146
  • 146
  • 146
  • 26
  • 23
  • 15
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Investigations into structure and properties of atomically-precise transition metal-chalcogenide clusters of CrTe and ligated Cr6Te8(PEt3)6

Pedicini, Anthony F 01 January 2017 (has links)
The complete understanding of a clusters electronic structure, the primary mechanisms for its properties and stabilization is necessary in order to functionalize them for use as building blocks within novel materials. First principle theoretical studies have been carried out upon the electronic properties of CrxTey (x = 1 – 6, y = 0 – 8, x + y ≤ 14), as well as for the larger triethylphosphine (PEt3) ligated cluster system of Cr6Te8(PEt3)6. Together, we aim to use the information garnered from the smaller clusters to address the underlying behavior of the ligated Cr6Te8(PEt3)6. Additionally, the properties of this larger cluster will be used to further understand its role when paired with C60 within the binary cluster assembled material. The stability and macroscopic properties of the Cr6Te8(PEt3)6 cluster, have been found to be sensitive to type of passivating ligand. As will be shown, the ground state structures of Crn atoms are sensitive to both the number and position of bonded Te atoms. Moreover, that this sensitivity carries over into larger cluster sizes, and at several size intervals produces clusters with high magnetization. To this, we add the investigation into the manipulation of the Cr6Te8 cluster geometry and its properties through various ligands, such as PH3, CO, and CN. It will show, that in altering these ligands there is a modification to the clusters valence shell count, which in turn alters its ionization potential and electron affinity. Additionally, although the ionization potential and electron affinity have changed for the Cr6Te8(PEt3)6 cluster, it has been found that its high magnetization does not.
102

"Blinded by the Lines: Mid-IR Spectra of Mira Variables Taken with Spitzer"

Baylis-Aguirre, Dana, Creech-Eakman, Michelle J., Luttermoser, Donald G., Gueth, Tina 28 September 2016 (has links)
We present preliminary analysis of mid-infrared spectra of M-type and C-type Mira variables. Due to the brightness of this sample, it is straightforward to monitor changes with phase in the infrared spectral features of these regular pulsators. We have spectra of 25 Mira variables, taken with phase, using the Spitzer Infrared Spectrograph (IRS) high-resolution module. Each star has multiple spectra obtained over a one-year period from 2008-09. This is a rich, unique data set due to multiple observations of each star and the high signal-to-noise ratio from quick exposure times to prevent saturation of the IRS instrument. This paper focuses on the 17.6 and 33.2 micron lines shared by M-types and C-types. These are mostly emission lines that change with phase. We discuss preliminary physical diagnostics for the atmospheres based on the lines, as well as possible line identifcations such as fuorescence of metal species.
103

Electron optical study of a secondary electron multiplier

Shen, Chang Min 01 January 1970 (has links)
Electron orbital theory was applied to the design of the geometrical structure of an electron multiplier for an image intensifier. A special structure satisfying production requirements was studied. Electron optical calculations consisted of determining the potential distribution and tracing the electron trajectories. Liebmann’s procedure was used to solve Laplace’s equation with constant potentials on the multiplier electrodes as boundary conditions. The trajectories were determined by solving the equation of motion in an electrostatic field using a Runge-Kutta procedure. The initial conditions for the trajectories were the initial energies, initial positions, and the initial directions of the secondary electrons. The plotted trajectories indicated the feasibility of an electron multiplier of the type studied.
104

Evidence for the existence of two stable sites for cobalt impurity atoms in aluminum

Venkatachar, Arun 01 January 1971 (has links)
Using Fe57 Mossbauer spectroscopy, two alternative sites occupied by cobalt (10-4 at. % ) impurity atoms in aluminum have been isolated. The substitutional site A is the stable position after annealing the sample above 840 K, followed by a rapid quench. The impurity atoms in site A are characterized by a single line Mossbauer spectrum (indicative of a cubic environment), a room-temperature f = 0.502 (r. m. s. displ. 0.071 A) and an I. S. (reI. to Fe) = -0.421 mm/sec. For anneals below 770 K the cobalt atoms migrate to site B, which is characterized by a well resolved quadrupole doublet (indicative of a non-cubic environment), a large change in the value of the room-temperature f = - 0.766 (r. m. s. displ. 0.071 A), I. S. = -0.150 mm/sec (increased s-electron density at the nucleus). All linewidths· are approximately 0.21 mm/sec, indicating high uniformity of impurity sites. The site distribution [A] / [B} varies from about 5 % to 95 % for anneals between 770 K and 830 K.
105

Crystal structure determination of β-lactoglobulin from electron micrographs

Roeter, Richard 01 January 1971 (has links)
Often electron micrographs exhibit a repeating structure. Sometimes this repeating structure satisfies the definition of a crystal in that it has a three dimensional repeating structure. If the unit cell structure of this repeating structure can be determined it can be used to help categorize different sections of a particular sample. In some cases, the use of optical diffraction analysis of electron micrographs with repeating structure is a method of determining the unit cell structure. Samples of β-Lactoglobulin were prepared for viewing in the electron microscope using both the crystalline material and carbon replicas of the crystal surface. Because the crystalline material was very unstable in the electron beam, images adequate for use as diffraction gratings could not be obtained. Electron images from the replicas were used to generate the optical diffraction patterns in this paper. The structure of β-Lactoglobulin has been determined previously by X-ray diffraction analysis. This information was used to assist in the interpretation of the optical diffraction patterns. Electron micrographs and optical diffraction patterns were recorded which were found to be consistent with the structure of β-Lactoglobulin which were found to be consistent with the structure of β-Lactoglobulin as determined by X-ray diffraction analysis. The unit cell dimensions were determined to be a = 58±4Å, b = 59±3Å and c = 102±12Å.
106

The application of exact electrodiffusion theory to ion transport across lipid bilayer membranes

Cohen, Scott 01 January 1983 (has links)
The question of how ions interact with each other and with the potential energy barrier in thin lipid bilayer membranes has interested investigators for several years. The application of electrodiffusion theory to the study of this question is the central theme of this work. We have calculated current-voltage curves for barriers of various shapes and heights, in each case by means of numerically integrating the exact electrodiffusion equation as well as this same equation in the constant field approximation. We have also calculated the total charge in the membrane for the same conditions under which we have calculated the current-voltage curves.
107

Techniques to Characterize Vapor Cell Performance for a Nuclear-Magnetic-Resonance Gyroscope

Mirijanian, James Julian 01 May 2012 (has links) (PDF)
Research was performed to improve the procedures for testing performance parameters of vapor cells for a nuclear-magnetic-resonance gyroscope. In addition to summarizing the theoretical infrastructure of the technology, this research resulted in the development and successful implementation of new techniques to characterize gyro cell performance. One of the most important parameters to measure for gyro performance is the longitudinal spin lifetime of polarized xenon atoms in the vapor cell. The newly implemented technique for measuring these lifetimes matches results from the industry standard method to within 3.5% error while reducing the average testing time by 76% and increasing data resolution by 54%. The vapor cell test methods were appended with new software to expedite the analysis of test data and to investigate more subtle details of the results; one of the two isotopes of xenon in the cells tends to exhibit troublesome second-order effects during these tests due to electric-quadrupole coupling, but now the added analysis capabilities can accurately extract relevant results from such data with no extra effort. Some extraneous lifetime measurement techniques were explored with less substantial results, but they provided useful insight into the complex workings of the gyro cell test system. New criteria were established to define the signal to noise ratio on a consistent basis from cell to cell across various parameters such as cell volume, temperature, and vapor pressure. A technique for measuring gas pressures inside the sealed cells helped link cell performance to cell development processes. This led to informed decisions on filling and sealing methods that consistently yielded cells with better performance in the last few months of this work. When this research began, cells with xenon lifetimes over ten seconds were rare in our lab; by the end, anything under 30 seconds was a disappointment. Not only did the test procedures improve, but so did the parameters being tested, and quite significantly at that. At the same time, many new avenues for continued progress have been opened; the work presented here, while instrumental, is only the beginning.
108

Resonant Anisotropic Emission in RABBITT Spectroscopy

Ghomashi, Bejan M 01 January 2018 (has links)
A variant of RABBITT pump-probe spectroscopy in which the attosecond pulse train comprises both even and odd harmonics of the fundamental IR probe frequency is explored to measure time-resolved photoelectron emission in systems that exhibit autoionizing states. It is shown that the group delay of both one-photon and two-photon resonant transitions is directly encoded in the energy-resolved photoelectron anisotropy as a function of the pump-probe time-delay. This principle is illustrated for a 1D model with symmetric zero-range potentials that supports both bound states and shape-resonances. The model is studied using both perturbation theory and solving the time-dependent Schodinger equation on a grid. Moreover, we study the case of a realistic atomic system, helium. In both cases, we demonstrate faithful reconstruction of the phase information for resonant photoemission.
109

Wavelength Dependent Strong Field Interactions with Atoms and Molecules

Szafruga, Urszula Bozena 31 August 2015 (has links)
No description available.
110

Advancements in time resolved spectroscopy and nonlinear microscopy

Semon, Bryan 08 December 2023 (has links) (PDF)
Non-linear optical processes such as coherent anti-Stokes Raman scattering and sum frequency generation offer a view into the chemical and biological interactions of molecules that is distinctly different from linear techniques like near infra-red and fluorescence. This insight comes at a cost: non-linear techniques are more sensitive to external perturbations of the system, increasing the noise and decreasing the repeatability of the data. We work here on both aspects of these non-linear techniques, taking advantage of their power to offer new imaging techniques as well as working to quantify and reduce the non-resonant noise inherent to the system. In pursuit of the first part, we look at formalin fixed paraffin embedded tissue samples. This is the most common form of tissue storage in the world. However, the paraffin renders them unavailable for spectroscopic study. We introduce a new technique, combination coherent anti-Stokes Raman scattering microscopy and sum frequency generation microscopy, to avoid the issue of paraffin signal contamination. This high resolution, widefield technique allows for the separate identification of paraffin and the tissue embedded within it. We show in this work the capability of this technique to enable high throughput automated detection of osteoporosis in mice. In pursuit of the second part, we demonstrate experimentally for the first time, deferred build up in coherent anti-Stokes Raman scattering. We show that coherent anti-Stokes Raman scattering signal is maximized when the probe pulse is delayed by an amount dependent on the probe width and the material itself. Non-resonant contamination, however, is maximized when the probe delay is zero, meaning that it is possible to decrease the non-resonant noise while increasing the desired signal. We also show that the dephasing time is inversely dependent on the probe width, so narrower probe pulses allow for further delayed probe pulses, which in turn decrease non-resonant noise more. We demonstrate this technique by looking at the effects of hydrogen bonding in pyridine-water complexes.

Page generated in 0.086 seconds