• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TRANSDIMENSIONAL PLASMONIC TITANIUM NITRIDE FOR TAILORABLE NANOPHOTONICS

Deesha Shah (12468408) 27 April 2022 (has links)
<p>In the realm of tunable optical devices, 3D nanostructures with metals and dielectrics have been utilized in a wide variety of practical applications ranging from optical switching to beam-steering devices. 2D materials, on the other hand, have enabled the exploration of truly new physics unattainable with 3D systems due to quantum confinement leading to unique optical properties and enhanced light-matter interactions. Transdimensional materials (TDMs) – atomically thin films of metals – can couple the robustness of 3D nanostructures with the new physics enabled by 2D features. However, the evolution of the optical properties in the transdimensional regime between 3D and 2D is still underexplored. The optical properties of metallic TDMs are expected to show unprecedented tailorability, including strong dependences on the film thickness, composition, strain, and surface termination. They also have an increased sensitivity to external optical and electrical perturbations, owing to their extraordinary light-confinement. Additionally, the small atomic thicknesses may lead to strongly confined surface plasmons and quantum and nonlocal phenomena. The strong tunability and light-confinement offered by TDMs have resulted in a search for atomically thin plasmonic material platforms that facilitate active metasurfaces with novel functionalities in the visible and near infrared (NIR) range. In this research, we explore the plasmonic properties and tailorability of atomically thin titanium nitride (TiN). We experimentally and theoretically study the thickness-dependent optical properties of epitaxial TiN films with thicknesses down to 1 nm to demonstrate confinement induced optical properties. Overall, this research demonstrates the potential of TDMs for unlocking novel optical phenomena at visible and NIR wavelengths and realizing a new generation of atomically thin tunable nanophotonic devices. </p>
2

Study on photoluminescence quantum yields of atomically thin-layered two-dimensional semiconductors transition metal dichalcogenides / 二次元原子層半導体遷移金属ダイカルコゲナイドにおける発光量子効率に関する研究

Nur, Baizura Binti Mohamed 23 July 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第21315号 / エネ博第371号 / 新制||エネ||73(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー応用科学専攻 / (主査)教授 松田 一成, 教授 佐川 尚, 教授 大垣 英明 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM

Page generated in 0.0829 seconds