• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 2
  • 2
  • Tagged with
  • 25
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite-difference methods for some non-linear reaction-diffusion systems in chemistry

Al-Mannai, Muna January 1998 (has links)
No description available.
2

Analysis of the proteolytic cleavage reaction of the tumour suppressor protein p53

Mee, Trevor Richard January 1999 (has links)
No description available.
3

Titanium metal particle growth through autocatalytic electroless deposition in a molten salt slurry reactor

Swanepoel, Jaco Johannes January 2021 (has links)
Near-net-shape manufacturing of titanium metal components through powder metallurgy confers various cost-saving benefits, from improved material utilisation to reduced energy consumption. Further savings can be realised by reducing the cost of the titanium metal powder that is used as feed material in powder metallurgy. Titanium metal-powder production costs can be reduced by removing the steps currently needed (i.e. milling, vacuum arc re-melting and atomisation) to convert titanium Kroll sponge into a powder product that is suitable for use in powder metallurgy. This can be potentially achieved through a controlled metallothermic reduction of titanium tetrachloride to produce a titanium metal powder product that can be used directly in powder metallurgy. Consequently, this thesis divides titanium metal-powder into two main categories, namely primary and secondary metal powder products. Titanium metal-powder is classified as a primary product when it can be used directly as feed material in powder metallurgy. In contrast, a secondary metal-powder product requires extra processing steps after chemical reduction before it can be used in powder metallurgy. To illustrate, titanium metal powder produced through plasma spheroidization is an example of a secondary metal powder product. The metallothermic reduction reaction is known to have two dominant reaction mechanisms. These mechanisms have a characteristic product morphology that forms under specific reaction conditions. The first mechanism is responsible for the sponge-like morphology obtained from the Kroll process, while the second mechanism results in an ultrafine precipitate that has a surface area to volume ratio large enough to oxidise in air to the extent that it cannot be regarded as commercially pure. Consequently, a primary titanium metal-powder product has to date not been realised as efforts to achieve particle growth on this ultrafine precipitate have been unsuccessful. This thesis's main objective was to demonstrate that metal particle growth on suspended metal particles is indeed possible through a controlled metallothermic reduction in a molten salt reaction medium. Subsequent efforts resulted in the postulation of a third reaction mechanism that would enable titanium metal particle growth. The postulated growth mechanism is electrochemical and referred to as “autocatalytic electroless deposition on suspended titanium metal particles”. Theory development and modelling efforts indicated that the postulated growth mechanism is possible, but only in a particular and low concentration range where both reagents are present in a meta-stable equilibrium with each other in the molten chloride reaction medium. The concentration range is estimated to be in the range of parts per million for each reagent. It was further shown that more than one product morphology is inherent in the conditions where the postulated mechanism is possible as there is no dominant reaction mechanism at such low reagent concentrations. Therefore, the metallothermic reduction reaction should be regarded as a system of reaction mechanisms at these conditions. Experimental results substantiated the postulated growth mechanism's existence to the extent where β-titanium metal was deposited on the surface of metallised ilmenite particles. The deposited layer was distinguishable from the substrate particle as ilmenite contains α-titanium (i.e. a hexagonally closed packed crystal system). Therefore, controlled titanium metal particle growth is hypothetically possible through a mechanism known as “autocatalytic electroless deposition”. However, further effort is still needed to demonstrate whether a viable primary titanium metal powder product can be produced. / Thesis (PhD (Engineering))--University of Pretoria, 2021. / Department of Science and Innovation / Chemical Engineering / PhD (Engineering) / Unrestricted
4

Programming Molecular Devices using Nucleic Acid Hairpins

Garg, Sudhanshu January 2016 (has links)
<p>Nucleic Acid hairpins have been a subject of study for the last four decades. They are composed of single strand that is </p><p>hybridized to itself, and the central section forming an unhybridized loop. In nature, they stabilize single stranded RNA, serve as nucleation</p><p>sites for RNA folding, protein recognition signals, mRNA localization and regulation of mRNA degradation. On the other hand, </p><p>DNA hairpins in biological contexts have been studied with respect to forming cruciform structures that can regulate gene expression.</p><p>The use of DNA hairpins as fuel for synthetic molecular devices, including locomotion, was proposed and experimental demonstrated in 2003. They</p><p>were interesting because they bring to the table an on-demand energy/information supply mechanism. </p><p>The energy/information is hidden (from hybridization) in the hairpin’s loop, until required.</p><p>The energy/information is harnessed by opening the stem region, and exposing the single stranded loop section.</p><p>The loop region is now free for possible hybridization and help move the system into a thermodynamically favourable state.</p><p>The hidden energy and information coupled with </p><p>programmability provides another functionality, of selectively choosing what reactions to hide and </p><p>what reactions to allow to proceed, that helps develop a topological sequence of events. </p><p>Hairpins have been utilized as a source of fuel for many different DNA devices. In this thesis, we program four different </p><p>molecular devices using DNA hairpins, and experimentally validate them in the</p><p>laboratory. 1) The first device: A </p><p>novel enzyme-free autocatalytic self-replicating system composed entirely of DNA that operates isothermally. 2) The second</p><p>device: Time-Responsive Circuits using DNA have two properties: a) asynchronous: the final output is always correct </p><p>regardless of differences in the arrival time of different inputs.</p><p>b) renewable circuits which can be used multiple times without major degradation of the gate motifs </p><p>(so if the inputs change over time, the DNA-based circuit can re-compute the output correctly based on the new inputs).</p><p>3) The third device: Activatable tiles are a theoretical extension to the Tile assembly model that enhances </p><p>its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly. </p><p>4) The fourth device: Controlled Amplification of DNA catalytic system: a device such that the amplification</p><p>of the system does not run uncontrollably until the system runs out of fuel, but instead achieves a finite</p><p>amount of gain.</p><p>Nucleic acid circuits with the ability </p><p>to perform complex logic operations have many potential practical applications, for example the ability to achieve point of care diagnostics.</p><p>We discuss the designs of our DNA Hairpin molecular devices, the results we have obtained, and the challenges we have overcome</p><p>to make these truly functional.</p> / Dissertation
5

A Numerical Analysis Approach For Estimating The Minimum Traveling Wave Speed For An Autocatalytic Reaction

Blanken, Erika 01 January 2008 (has links)
This thesis studies the traveling wavefront created by the autocatalytic cubic chemical reaction A + 2B → 3B involving two chemical species A and B, where A is the reactant and B is the auto-catalyst. The diffusion coefficients for A and B are given by DA and DB. These coefficients differ as a result of the chemical species having different size and/or weight. Theoretical results show there exist bounds, v* and v*, depending on DB/DA, where for speeds v ≥ v*, a traveling wave solution exists, while for speeds v < v*, a solution does not exist. Moreover, if DB ≤ DA, and v* and v* are similar to one another and in the order of DB/DA when it is small. On the other hand, when DA ≤ DB there exists a minimum speed vmin, such that there is a traveling wave solution if the speed v > vmin. The determination of vmin is very important in determining the dynamics of general solutions. To fill in the gap of the theoretical study, we use numerical methods to determine vmin for various cases. The numerical algorithm used is the fourth-order Runge-Kutta method (RK4).
6

Unstable cores are the source of instability in chemical reaction networks

Vassena, Nicola, Stadler, Peter F. 07 March 2024 (has links)
In biochemical networks, complex dynamical features such as superlinear growth and oscillations are classically considered a consequence of autocatalysis. For the large class of parameter-rich kinetic models, which includes Generalized Mass Ac- tion kinetics and Michaelis-Menten kinetics, we show that certain submatrices of the stoichiometric matrix, so-called unstable cores, are sufficient for a reaction network to admit instability and potentially give rise to such complex dynami- cal behavior. The determinant of the submatrix distinguishes unstable-positive feedbacks, with a single real-positive eigenvalue, and unstable-negative feedbacks without real-positive eigenvalues. Autocatalytic cores turn out to be exactly the unstable-positive feedbacks that are Metzler matrices. Thus there are sources of dynamical instability in chemical networks that are unrelated to autocatalysis. We use such intuition to design non-autocatalytic biochemical networks with su- perlinear growth and oscillations.
7

Revestimentos de níquel químico para proteção contra corrosão. / Autocatalytic nickel-phosphorus (electroless nickel) coatings to protection corrosion.

Cardoso, Cristiano 05 April 2006 (has links)
O revestimento de níquel químico é largamente utilizado na proteção contra a corrosão de equipamentos e estruturas utilizados na exploração de petróleo em águas profundas. Apesar de ser considerado um dos revestimentos mais adequados para esta finalidade, são muitos os casos em que se verificam falhas prematuras do revestimento em serviço. Isto tem sido atribuído às diferenças nas características do revestimento decorrentes das diferenças do processo de aplicação e da natureza e preparação da superfície dos substratos a serem protegidos. Estas diferenças decorrem do fato de não existirem especificações abrangentes que definam as características necessárias do revestimento para uma garantia de qualidade. Diante disto, o presente trabalho teve como objetivo estudar a influência dos principais fatores sobre o desempenho dos revestimentos de níquel químico utilizando ferramentas estatísticas como: planejamento fatorial, seleção dos melhores subconjuntos de regressão, regressão múltipla e curvas de nível. Os fatores considerados neste estudo foram: tipo e estado superficial do substrato, idade do banho, teor de fósforo no revestimento, natureza e teor de contaminantes no revestimento, espessura do revestimento e tipo de tratamento térmico. A caracterização dos revestimentos de níquel químico foi realizada conforme sugerida na norma ISO 4527 e o desempenho dos revestimentos foi verificado por meio dos ensaios de exposição à névoa salina (1 536 h), exposição ao dióxido de enxofre (10 ciclos) e imersão em água do mar sintética (120 dias). Ensaios eletroquímicos (polarização linear e espectroscopia de impedância eletroquímica) foram realizados somente com o intuito de compará-los ao ensaio de exposição à névoa salina e,assim, ter um ensaio capaz de verificar revestimentos de bom desempenho em um período de tempo menor. Dentro dos intervalos estudados, verificou-se que o desempenho do revestimento de níquel químico é influenciado pelo tipo de substrato, pela espessura da camada depositada, pelo teor de fósforo, pela idade do banho, pelo tratamento térmico e pelos teores dos seguintes contaminantes: enxofre, chumbo, magnésio, cobre, ferro e manganês. A metodologia estatística adotada permitiu verificar a interação entre os fatores influenciadores, fato não considerado na literatura consultada. Além disto, foi possível constatar que os ensaios adotados nas normas internacionais atuais são adequados para verificar a qualidade dos revestimentos. Verificou-se também que os ensaios eletroquímicos, apesar de adequados para o estudo da resistência intrínseca à corrosão do revestimento de níquel químico, não se mostraram adequados para detectar a presença de porosidade que é o principal indicativo da qualidade de proteção por barreira de revestimentos catódicos como o níquel químico. Com os resultados obtidos, será possível a elaboração de uma especificação para se obter revestimentos de níquel químico com bom desempenho. / The autocatalytic nickel-phosphorus (NiP) or electroless nickel (EN) coatings are widely used to protect equipment and structures against corrosion and erosion, used in the exploitation of petroleum in deep waters. Even though NiP is considered as the most appropriate coating for this purpose, many premature failures are verified in service. This has been attributed to the differences in the characteristics of the coating due to the differences in the application processes and in the nature and preparation of the substrate surfaces. The lack of broad specifications that define the required characteristics of the good quality coating is responsible for those differences. The present work had as its objective to identify the main factors related to the NiP performance using statistical tools as: factorial design, best subset regression, multiple regression and contour diagram. The considered factors were: substrate type, substrate surface finishing, bath age, phosphorus content, thickness, heat treatment and impurities. The NiP coatings were characterized in agreement with the ISO 4527 and their performance was verified through the salt spray test (1 536 h), the Kesternish test (10 cycles) and the synthetic sea water immersion test (120 days). Electrochemical tests (linear polarization and electrochemical impedance spectroscopy) were conducted in order to compare them to the salt spray test and thus reducing the testing time. In the studied range, it was verified that the NiP performance is influenced by the following factors: substrate type, thickness coating, phosphorus content, bath age (MTO), heat treatment and the impurities: sulfur, lead, magnesium, copper, iron and manganese. It was possible to verify that the types of accelerated corrosion tests adopted in the current international standards are appropriate to verify the quality of the coatings. It was also verified that the electrochemical tests, despite being suitable to indicate the NiP intrinsic corrosion resistance, are not appropriate to verify the NiP porosity (which is the main indication of a cathodic coating quality). With the obtained results, it will be possible to establish a better specification in order to obtain NiP with good quality.
8

Bifurcation problems in chaotically stirred reaction-diffusion systems

Menon, Shakti Narayana January 2008 (has links)
Doctor of Philosophy / A detailed theoretical and numerical investigation of the behaviour of reactive systems under the influence of chaotic stirring is presented. These systems exhibit stationary solutions arising from the balance between chaotic advection and diffusion. Excessive stirring of such systems results in the termination of the reaction via a saddle-node bifurcation. The solution behaviour of these systems is analytically described using a recently developed nonperturbative, non-asymptotic variational method. This method involves fitting appropriate parameterised test functions to the solution, and also allows us to describe the bifurcations of these systems. This method is tested against numerical results obtained using a reduced one-dimensional reaction-advection-diffusion model. Four one- and two-component reactive systems with multiple homogeneous steady-states are analysed, namely autocatalytic, bistable, excitable and combustion systems. In addition to the generic stirring-induced saddle-node bifurcation, a rich and complex bifurcation scenario is observed in the excitable system. This includes a previously unreported region of bistability characterised by a hysteresis loop, a supercritical Hopf bifurcation and a saddle-node bifurcation arising from propagation failure. Results obtained with the nonperturbative method provide a good description of the bifurcations and solution behaviour in the various regimes of these chaotically stirred reaction-diffusion systems.
9

Analysis Of Self-processing Mechanism Of Galactose Oxidase By Site-directed Mutagenesis And Heterologous Expression In Escherichia Coli

Gencer, Burcak 01 December 2005 (has links) (PDF)
In this study, self-catalytic maturation of heterologously expressed pro-galactose oxidase was analysed in E.coli by altering some amino acids which were supposed to play a crucial role in pro-peptide removal. Galactose oxidase (GOase / EC 1.1.3.9) from Fusarium graminearum / having a molecular mass of 68kDa, is a monomeric, copper containing enzyme with an unusual thioether bond. The enzyme is produced as a precursor with an additional 8 amino acid pre- and a 17- amino acid pro-sequence at the N terminus. Previous work has shown that the pre-peptide is removed possibly by a protease during secretion, whereas the 17 amino acid pro-peptide is removed autocatalytically by the aerobic addition of Cu2+ to the precursor, preceding the formation of the thioether bond at the active site. The pro-gao gene was on ProGON1 and ProGOMN1 constructs which were previously established on pET101/D/lacZ vector in England by directed evolution. ProGON1 contains silent mutations at the N-terminus different from native galactose oxidase whereas ProGOMN1 has six further mutations within the mature enzyme, providing high expression. The cleavage site mutations R-1P/A1P, R-1X/A1X, S2A, and the H522A mutation just against the cleavage site in the three dimensional configuration, were carried out by site-directed mutagenesis. Those and some extra mutations were confirmed by DNA sequence analysis. Next, mutant galactose oxidases were expressed in E. coli BL21 Star (DE3), and were purified by Strep-Tactin&reg / Sepharose&reg / column, operating on the basis of affinity chromatography. Subsequently, SDS-PAGE was performed to analyze self-processing by detecting molecular mass difference of protein bands resulting from pro-sequence removal or existence. When the bands obtained in SDS-PAGE were compared, it was seen that the products of original recombinant plasmids, i.e. ProGON1, ProGOMN1 / and the mutational variants showed no difference in band size, all slightly above 70kDa / indicating pro-sequence presence on all constructs. Non-mutants and some of the mutants showed galactose oxidase activity, signifying proper active site construction by thioether bond formation. ProGOMN1 was submitted for N-terminal amino acid sequencing to be able to assert that a size above 70kDa is not solely due to the existence of a 1 kDa Strep-tag II at C-terminus. Sequencing data affirmed the presence of both the pre-peptide and the pro-preptide showing that processing has not occurred at the N-terminus. Accordingly, in this study, it was shown for the first time that the existence of a pre-pro-peptide at the N-terminus of galactose oxidase does not prevent thioether bond formation at the active site. Furthermore, since the pro-peptide is cleaved autocatalytically, the lack of removal of the pre-peptide in E.coli in the presence of Cu 2+ and oxygen is very likely to be the cause of lack of pro-peptide cleavage. In future studies the region corresponding to the pre-peptide will be deleted to prove this hypothesis.
10

Bifurcation problems in chaotically stirred reaction-diffusion systems

Menon, Shakti Narayana January 2008 (has links)
Doctor of Philosophy / A detailed theoretical and numerical investigation of the behaviour of reactive systems under the influence of chaotic stirring is presented. These systems exhibit stationary solutions arising from the balance between chaotic advection and diffusion. Excessive stirring of such systems results in the termination of the reaction via a saddle-node bifurcation. The solution behaviour of these systems is analytically described using a recently developed nonperturbative, non-asymptotic variational method. This method involves fitting appropriate parameterised test functions to the solution, and also allows us to describe the bifurcations of these systems. This method is tested against numerical results obtained using a reduced one-dimensional reaction-advection-diffusion model. Four one- and two-component reactive systems with multiple homogeneous steady-states are analysed, namely autocatalytic, bistable, excitable and combustion systems. In addition to the generic stirring-induced saddle-node bifurcation, a rich and complex bifurcation scenario is observed in the excitable system. This includes a previously unreported region of bistability characterised by a hysteresis loop, a supercritical Hopf bifurcation and a saddle-node bifurcation arising from propagation failure. Results obtained with the nonperturbative method provide a good description of the bifurcations and solution behaviour in the various regimes of these chaotically stirred reaction-diffusion systems.

Page generated in 0.1055 seconds