• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of Dissolved Air Flotation for Algal Harvesting at the Logan, Utah Wastewater Treatment Plant

Elder, Andrew R. 01 December 2011 (has links)
This research evaluated dissolved air flotation (DAF) as a separation method for algae and phosphorus from municipal wastewater at the City of Logan, Utah Wastewater Reclamation Facility. DAF uses the supersaturation of air to raise suspended algae and other particles to the surface, where they can be easily removed. DAF, in conjunction with chemical coagulants and flocculants, can approach 95% algae and phosphorus removal. The algae removed using the DAF process will be used in the production of biofuels and bioplastics. A pilot DAF unit was used to determine the optimum alum dose for total phosphorus (TP) and algae removal. In addition, a bench-scale jar test unit was used to study the effects of various alum and polymer doses on removal efficiencies at different times of the day. An optimal alum dose was found to be 30 mg/L based on results from both the pilot and bench-scale units. No advantage to adding polymer was found. Algae removal efficiencies on the pilot DAF ranged from 68-70%, and the effluent algae concentration was reduced to 10 mg/L. Approximately 65% of the total phosphorus was removed, from 1.1 to 0.4 mg/L, which is low enough to meet regulations anticipated to be promulgated by the state of Utah. Using the assumption that the molar weight of algae is 3,550 g/mole, the molar ratio of Al/TSS was found to be 30.1 and the molar ratio of Al/TP was found to be 7.5. Extracellular polymeric substances (EPS) excreted by algal cells act as a natural flocculant and may allow for chemical usage to be minimized. Autoflocculation and bioflocculation, natural processes caused by EPS production and an increased pH level, were not observed to be a significant factor. The chemical dosing rates provide the City of Logan with basic operational parameters for a full-scale (15 million gallons per day) DAF plant, providing an effluent phosphorus level below 0.5 mg/L. The alum will cost $1,118 per day, with a daily electrical cost of approximately $149. This full-scale DAF plant would harvest 1,563 kg of algal biomass per day, with a cost per kilogram of algae at $0.81.
2

Autoflocculating Mixotrophic Algal Consortia Approach to Sustainable Wastewater Treatement

Krupa, D January 2014 (has links) (PDF)
The phenomenon of rapid algal blooms in response to nutrient overloads has been adapted to treat synthetic domestic wastewater. Various algal consortia collected from several eutrophied water bodies were subject to high density algal culture (upto 106-107 cells/mL) and screened for rapid algal growth, pollutant removal, nutrient recovery under mixotrophy and auto-flocculation. When tried in laboratory scale algal ponds, these algal consortia showed growth rates between 0.15 and 1.07 d-1. Results indicate that Chlorella occurred frequently among most consortia although not always the largest in number. While individual algal species varied in growth rates among these consortia, the log phase for most of these algae lasted 4-5 d after which the algal species began to flocculate between day 5-8 at different rates. The flocculation stage lasted between Day 6-8 wherein about 65% cells flocculated during monsoon and over 90% in winter. Although over 90% removal of N and 80% removal of P occurred in this period, the net N and P harvested as flocculated algae ranged from ~30-50% and ~40-70%, respectively. A consortia approach, wherein algal cells auto-flocculate after reaching a high cell density and nutrient removal provides an easy, low energy and sustainable approach to simultaneous wastewater treatment as well as energy and nutrient recovery from domestic wastewaters.

Page generated in 0.0663 seconds