• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plasmonic waveguides self-assembled on DNA origami templates: from synthesis to near-field characterizations

Gür, Fatih Nadi 12 June 2018 (has links) (PDF)
Manipulating light by controlling surface plasmons on metals is being discussed as a means for bridging the size gap between micrometer-sized photonic circuits and nanometer-sized integrated electronics. Plasmonic waveguides based on metal nanoparticles are of particular interest for circumventing the diffraction limit, thereby enabling high-speed communication over short-range distances in miniaturized micro-components. However, scalable, inexpensive fine-tuning of particle assemblies remains a challenge and near-field probing is required to reveal plasmonic interactions. In this thesis, self-assembled waveguides should be produced on DNA scaffolds. DNA origami is an extremely versatile and robust self-assembly method which allows scalable production of nanostructures with a fine control of assemblies at the nanoscale. To form the plasmonic waveguides, six-helix bundle DNA origami nanotubes are used as templates for attachment of highly monodisperse and monocrystalline gold nanoparticles with an inter-particle distance of 1-2 nm. In the first part of this thesis, the effects of parameters which are involved in assembly reactions are systematically investigated. The assembly yield and binding occupancy of the gold nanoparticles are determined by an automated, high-throughput image analysis of electron micrographs of the formed complexes. As a result, unprecedented binding site occupancy and assembly yield are achieved with the optimized synthesis protocol. In addition, waveguides with different sizes of gold nanoparticles and different inter-particle distances, quantum dots attachments to the waveguides and multimerization of the waveguides are successfully realized. In the second part of this thesis, direct observation of energy transport through a self-assembled waveguide towards a fluorescent nanodiamond is demonstrated. High-resolution, near-field mapping of the waveguides are studied by electron energy loss spectroscopy and cathodoluminescence imaging spectroscopy. The experimental and simulation results reveal that energy propagation through the waveguides is enabled by coupled surface plasmon modes. These surface plasmon modes are probed at high spatial and spectral resolutions. The scalable self-assembly approach presented here will enable the construction of complex, sub diffraction plasmonic devices for applications in high-speed optical data transmission, quantum information technology, and sensing. / Die Manipulation des Lichts durch die Kontrolle von Oberflächenplasmonen auf metallischen Oberflächen und Nanopartikeln gilt als vielversprechende Methode zur Überbrückung der Größen-Lücke zwischen Mikrometer-großen photonischen und nanometer-großen elektronischen Schaltkreisen. Plasmonische Wellenleiter basierend auf metallischen Nanopartikeln sind vom besonderen Interesse, da sie die Umgehung des Beugungslimits und somit eine Hochgeschwindigkeitskommunikation über kurze Distanzen in immer kleiner werdenden Schaltkreisen ermöglichen könnten. Allerdings ist die skalierbare und kostengünstige Anordnung von Partikeln eine große Herausforderung und es werden Nahfelduntersuchungen benötigt um plasmonische Interaktionen detektieren zu können. Das Ziel dieser Arbeit ist die Selbstassemblierung von multi-partikel Wellenleitern auf DNA Gerüsten. Die Verwendung von DNA-Origami bietet eine äußerst vielseitige Plattform zur skalierbaren Herstellung von Nanostrukturen mittels Selbstassemblierung und ermöglicht eine präzise Kontrolle der Anordnungen im Nanobereich. Für den Aufbau der plasmonischen Wellenleiter werden DNA-Origami Nanoröhren, bestehend aus sechs Helices als Templat für die Anbindung von monodispersen und monokristallinen Goldnanopartikeln mit einem interpartikulären Abstand von 1-2 nm verwendet. Im ersten Abschnitt dieser Arbeit werden die beeinflussenden Faktoren dieser Assemblierungsreaktion systematisch untersucht. Die Ausbeute der assemblierten Strukturen und die Besetzung der Bindungsstellen werden durch eine automatisierte und effiziente Bildanalyse von Elektronenmikroskopieaufnahmen ausgewertet. Durch die Entwicklung eines optimierten Syntheseprotokolls werden bisher unerreichte Assemblierungsausbeuten ermöglicht. Zusätzlich erfolgen die experimentelle Realisierung von Strukturen mit verschieden großen Goldnanopartikeln und unterschiedlichen interpartikulären Abständen, sowie die Anbindung von Quantenpunkten an die Wellenleiter und eine Verknüpfung der assemblierten Strukturen. Der zweite Abschnitt dieser Dissertation befasst sich mit der Untersuchung des Energietransports in selbstassemblierten Wellenleitern über einen fluoreszierenden Nanodiamanten. Dazu erfolgen hochaufgelöste Nahfeldmessungen der Wellenleiter mittels Elektronenenergieverlustspektroskopie und Kathodolumineszenz-mikroskopie. Die experimentellen Ergebnisse und zusätzlich durchgeführte Simulationen bestätigen eine durch gekoppelte Oberflächenplasmonenmoden induzierte Weitergabe der Energie innerhalb des Wellenleiters. Diese Oberflächenplasmonenmoden werden bei hoher räumlicher und spektraler Auflösung untersucht. Das hier umgesetzte Konzept der Selbstassemblierung wird den Aufbau komplexer plasmonischer Geräte für Anwendungen im Bereich der optischen Hochgeschwindigkeitsdatenübertragung, der Quanteninformations-technolgie und der Sensorik ermöglichen.
2

Plasmonic waveguides self-assembled on DNA origami templates: from synthesis to near-field characterizations

Gür, Fatih Nadi 26 March 2018 (has links)
Manipulating light by controlling surface plasmons on metals is being discussed as a means for bridging the size gap between micrometer-sized photonic circuits and nanometer-sized integrated electronics. Plasmonic waveguides based on metal nanoparticles are of particular interest for circumventing the diffraction limit, thereby enabling high-speed communication over short-range distances in miniaturized micro-components. However, scalable, inexpensive fine-tuning of particle assemblies remains a challenge and near-field probing is required to reveal plasmonic interactions. In this thesis, self-assembled waveguides should be produced on DNA scaffolds. DNA origami is an extremely versatile and robust self-assembly method which allows scalable production of nanostructures with a fine control of assemblies at the nanoscale. To form the plasmonic waveguides, six-helix bundle DNA origami nanotubes are used as templates for attachment of highly monodisperse and monocrystalline gold nanoparticles with an inter-particle distance of 1-2 nm. In the first part of this thesis, the effects of parameters which are involved in assembly reactions are systematically investigated. The assembly yield and binding occupancy of the gold nanoparticles are determined by an automated, high-throughput image analysis of electron micrographs of the formed complexes. As a result, unprecedented binding site occupancy and assembly yield are achieved with the optimized synthesis protocol. In addition, waveguides with different sizes of gold nanoparticles and different inter-particle distances, quantum dots attachments to the waveguides and multimerization of the waveguides are successfully realized. In the second part of this thesis, direct observation of energy transport through a self-assembled waveguide towards a fluorescent nanodiamond is demonstrated. High-resolution, near-field mapping of the waveguides are studied by electron energy loss spectroscopy and cathodoluminescence imaging spectroscopy. The experimental and simulation results reveal that energy propagation through the waveguides is enabled by coupled surface plasmon modes. These surface plasmon modes are probed at high spatial and spectral resolutions. The scalable self-assembly approach presented here will enable the construction of complex, sub diffraction plasmonic devices for applications in high-speed optical data transmission, quantum information technology, and sensing. / Die Manipulation des Lichts durch die Kontrolle von Oberflächenplasmonen auf metallischen Oberflächen und Nanopartikeln gilt als vielversprechende Methode zur Überbrückung der Größen-Lücke zwischen Mikrometer-großen photonischen und nanometer-großen elektronischen Schaltkreisen. Plasmonische Wellenleiter basierend auf metallischen Nanopartikeln sind vom besonderen Interesse, da sie die Umgehung des Beugungslimits und somit eine Hochgeschwindigkeitskommunikation über kurze Distanzen in immer kleiner werdenden Schaltkreisen ermöglichen könnten. Allerdings ist die skalierbare und kostengünstige Anordnung von Partikeln eine große Herausforderung und es werden Nahfelduntersuchungen benötigt um plasmonische Interaktionen detektieren zu können. Das Ziel dieser Arbeit ist die Selbstassemblierung von multi-partikel Wellenleitern auf DNA Gerüsten. Die Verwendung von DNA-Origami bietet eine äußerst vielseitige Plattform zur skalierbaren Herstellung von Nanostrukturen mittels Selbstassemblierung und ermöglicht eine präzise Kontrolle der Anordnungen im Nanobereich. Für den Aufbau der plasmonischen Wellenleiter werden DNA-Origami Nanoröhren, bestehend aus sechs Helices als Templat für die Anbindung von monodispersen und monokristallinen Goldnanopartikeln mit einem interpartikulären Abstand von 1-2 nm verwendet. Im ersten Abschnitt dieser Arbeit werden die beeinflussenden Faktoren dieser Assemblierungsreaktion systematisch untersucht. Die Ausbeute der assemblierten Strukturen und die Besetzung der Bindungsstellen werden durch eine automatisierte und effiziente Bildanalyse von Elektronenmikroskopieaufnahmen ausgewertet. Durch die Entwicklung eines optimierten Syntheseprotokolls werden bisher unerreichte Assemblierungsausbeuten ermöglicht. Zusätzlich erfolgen die experimentelle Realisierung von Strukturen mit verschieden großen Goldnanopartikeln und unterschiedlichen interpartikulären Abständen, sowie die Anbindung von Quantenpunkten an die Wellenleiter und eine Verknüpfung der assemblierten Strukturen. Der zweite Abschnitt dieser Dissertation befasst sich mit der Untersuchung des Energietransports in selbstassemblierten Wellenleitern über einen fluoreszierenden Nanodiamanten. Dazu erfolgen hochaufgelöste Nahfeldmessungen der Wellenleiter mittels Elektronenenergieverlustspektroskopie und Kathodolumineszenz-mikroskopie. Die experimentellen Ergebnisse und zusätzlich durchgeführte Simulationen bestätigen eine durch gekoppelte Oberflächenplasmonenmoden induzierte Weitergabe der Energie innerhalb des Wellenleiters. Diese Oberflächenplasmonenmoden werden bei hoher räumlicher und spektraler Auflösung untersucht. Das hier umgesetzte Konzept der Selbstassemblierung wird den Aufbau komplexer plasmonischer Geräte für Anwendungen im Bereich der optischen Hochgeschwindigkeitsdatenübertragung, der Quanteninformations-technolgie und der Sensorik ermöglichen.

Page generated in 0.0974 seconds