• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Smart Auto-completion in Live Chat Utilizing the Power of T5 / Smart automatisk komplettering i livechatt som utnyttjar styrkan hos T5

Wang, Zhanpeng January 2021 (has links)
Auto-completion is a task that requires an algorithm to give suggestions for completing sentences. Specifically, the history of live chat and the words already typed by the agents are provided to the algorithm for outputting the suggestions to finish the sentences. This study aimed to investigate if the above task can be handled by fine-tuning a pre-trained T5 model on the target dataset. In this thesis, both an English and a Portuguese dataset were selected. Then, T5 and its multilingual version mT5were fine-tuned on the target datasets. The models were evaluated with different metrics (log perplexity, token level accuracy, and multi-word level accuracy), and the results are compared to those of the baseline methods. The results on these different metrics show that a method based on pre-trained T5 is a promising approach to handle the target task. / Automatisk komplettering är en uppgift som kräver en algoritm för att ge förslag på hur man kan slutföra meningar. Specifikt levereras historien om livechatt och de ord som redan har skrivits av agenterna till algoritmen för att mata ut förslagen för att avsluta meningarna. Denna studie syftade till att undersöka om ovanstående uppgift kan hanteras genom att finjustera en förtränad T5-modell på måldatamängden. I denna avhandling valdes både en engelsk och en portugisisk datamängd. Därefter finjusterades T5 och dess flerspråkiga version mT5 på måldatauppsättningarna. Modellerna utvärderades med olika mätvärden (log-perplexitet, precision på ordnivå och flerordsnivå), och resultaten jämförs med baslinjemetoderna. Resultaten på dessa olika mätvärden visar att en metod baserad på en förtränad T5 är ett lovande tillvägagångssätt för att hantera uppgiften.

Page generated in 0.106 seconds