• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • Tagged with
  • 16
  • 16
  • 14
  • 12
  • 10
  • 9
  • 9
  • 9
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse notwendiger Anforderungen an das Autonome Fahren im Automobilbereich und Übertragbarkeit auf Baumaschinen

Schubert, Torsten, Bäker, Bernard 07 January 2016 (has links) (PDF)
Das autonome Fahren ist derzeit aufgrund zahlreicher aktueller Forschungs- und Entwicklungsprojekte namhafter Automobilhersteller und -zulieferer im Fokus des öffentlichen Interesses. Der stetige Fortschritt des autonomen Fahrens kann unter anderem auf der jährlich in Las Vegas stattfindenden Consumer Electronics Show (CES) festgestellt werden, welche seit einiger Zeit auch von Automobilherstellern als Plattform zur Vorstellung neuer Technologien genutzt wird. So demonstrierte die Audi AG einen A7, der vollständig autonom vom Silicon Valley eine Strecke von 900 km Länge nach Las Vegas fuhr. Darüber hinaus legen auch automobilfremde Hochtechnologiekonzerne ihr Interesse an dieser Schlüsseltechnologie offen und präsentieren eigene Forschungs- und Entwicklungsarbeiten. Google verkündete die Forschung an einem eigenen autonomen Fahrzeug und auch Spekulationen über das Interesse von Apple wurden medial publik. Dennoch stehen die rasante Entwicklungsgeschwindigkeit und die öffentlich bereits präsentierte Funktionsfähigkeit des Autonomen Fahrens im Kontrast zu der geringen Anwendung im deutschen Straßenverkehr. In Deutschland und anderen Ländern sind bisher nur Pilotprojekte aus Forschung und Entwicklung existent. Diese unterliegen aktuell noch vielen Restriktionen. Dies macht deutlich, dass trotz der bisher erreichten Einzelerfolge dieser Technologie keine Serienreife besteht. So müssen für den tatsächlichen Einsatz des Autonomen Fahrens im Straßenverkehr technologische, soziologische sowie gesetzliche Rahmenbedingungen eingehalten, erweitert, angepasst, respektive erst noch definiert wer-den. Insbesondere im urbanen Umfeld besteht hier hoher Forschungsbedarf auch im Hin-blick auf technologische Rahmenbedingungen. Die vorliegende Arbeit soll einen Einblick über offene Fragestellungen und technologische Hürden sowie deren Bedeutung für das Autonome Fahren ermöglichen. Zudem wird ein kurzer Überblick darüber gegeben, wie dies auf den Sektor der Baumaschinen übertragbar ist.
2

Autonomic Computing

09 January 2017 (has links) (PDF)
Software has never been as important as today – and its impact on life, work and society is growing at an impressive rate. We are in the flow of a software-induced transformation of nearly all aspects of our way of life and work. The dependence on software has become almost total. Malfunctions and unavailability may threaten vital areas of our society, life and work at any time. The two massive challenges of software are one hand the complexity of the software and on the other hand the disruptive environment. Complexity of the software is a result of the size, the continuously growing functionality, the more complicated technology and the growing networking. The unfortunate consequence is that complexity leads to many problems in design, development, evolution and operation of software-systems, especially of large software-systems. All software-systems live in an environment. Many of today’s environments can be disruptive and cause severe problems for the systems and their users. Examples of disruptions are attacks, failures of partner systems or networks, faults in communications or malicious activities. Traditionally, both growing complexity and disruptions from the environment have been tackled by better and better software engineering. The development and operating processes are constantly being improved and more powerful engineering tools are introduced. For defending against disruptions, predictive methods – such as risk analysis or fault trees – are used. All this techniques are based on the ingenuity, experience and skills of the engineers! However, the growing complexity and the increasing intensity of possible disruptions from the environment make it more and more questionable, if people are really able to successfully cope with this raising challenge in the future. Already, serious research suggests that this is not the case anymore and that we need assistance from the software-systems themselves! Here enters “autonomic computing” – A promising branch of software science which enables software-systems with self-configuring, self-healing, self-optimization and self-protection capabilities. Autonomic computing systems are able to re-organize, optimize, defend and adapt themselves with no real-time human intervention. Autonomic computing relies on many branches of science – especially computer science, artificial intelligence, control theory, machine learning, multi-agent systems and more. Autonomic computing is an active research field which currently transfers many of its results into software engineering and many applications. This Hauptseminar offered the opportunity to learn about the fascinating technology “autonomic computing” and to do some personal research guided by a professor and assisted by the seminar peers.
3

Autonomic Computing: State of the Art - Promises - Impact

Furrer, Frank J., Püschel, Georg 09 January 2017 (has links)
Software has never been as important as today – and its impact on life, work and society is growing at an impressive rate. We are in the flow of a software-induced transformation of nearly all aspects of our way of life and work. The dependence on software has become almost total. Malfunctions and unavailability may threaten vital areas of our society, life and work at any time. The two massive challenges of software are one hand the complexity of the software and on the other hand the disruptive environment. Complexity of the software is a result of the size, the continuously growing functionality, the more complicated technology and the growing networking. The unfortunate consequence is that complexity leads to many problems in design, development, evolution and operation of software-systems, especially of large software-systems. All software-systems live in an environment. Many of today’s environments can be disruptive and cause severe problems for the systems and their users. Examples of disruptions are attacks, failures of partner systems or networks, faults in communications or malicious activities. Traditionally, both growing complexity and disruptions from the environment have been tackled by better and better software engineering. The development and operating processes are constantly being improved and more powerful engineering tools are introduced. For defending against disruptions, predictive methods – such as risk analysis or fault trees – are used. All this techniques are based on the ingenuity, experience and skills of the engineers! However, the growing complexity and the increasing intensity of possible disruptions from the environment make it more and more questionable, if people are really able to successfully cope with this raising challenge in the future. Already, serious research suggests that this is not the case anymore and that we need assistance from the software-systems themselves! Here enters “autonomic computing” – A promising branch of software science which enables software-systems with self-configuring, self-healing, self-optimization and self-protection capabilities. Autonomic computing systems are able to re-organize, optimize, defend and adapt themselves with no real-time human intervention. Autonomic computing relies on many branches of science – especially computer science, artificial intelligence, control theory, machine learning, multi-agent systems and more. Autonomic computing is an active research field which currently transfers many of its results into software engineering and many applications. This Hauptseminar offered the opportunity to learn about the fascinating technology “autonomic computing” and to do some personal research guided by a professor and assisted by the seminar peers.:Introduction 5 1 What Knowledge Does a Taxi Need? – Overview of Rule Based, Model Based and Reinforcement Learning Systems for Autonomic Computing (Anja Reusch) 11 2 Chancen und Risiken von Virtual Assistent Systemen (Felix Hanspach) 23 3 Evolution einer Microservice Architektur zu Autonomic Computing (Ilja Bauer) 37 4 Mögliche Einflüsse von autonomen Informationsdiensten auf ihre Nutzer (Jan Engelmohr) 49 5 The Benefits of Resolving the Trust Issues between Autonomic Computing Systems and their Users (Marc Kandler) 61
4

Anwendungsorientierte Erweiterung von Testfahrtdaten mit 3D Umgebungsdaten

Gaitzsch, Lucas 29 April 2022 (has links)
Diese Masterarbeit ist eine Abhandlung zur Auswahl und Einbindung eines Sensors zur Erfassung dreidimensionaler Umgebungsdaten in die TUC DriveCloud. Im zweiten Kapitel werden die grundlegenden Informationen zum Thema behandelt. Anschließend wird auf den aktuellen Stand der Technik eingegangen. Dabei werden die zur Aufnahme und Verwaltung von Umgebungsdaten geeigneten Softwarelösungen sowie bereits existierende Datensätze vorgestellt. Im vierten Kapitel wird das Konzept zur Erweiterung der TUC DriveCloud Architektur für die Aufnahme von Umgebungsdaten vorgestellt. Das darauffolgende Kapitel beschreibt die Umsetzung. Im sechsten Kapitel werden die Ergebnisse präsentiert. Schlussendlich wird die Arbeit zusammengefasst und ein Ausblick gegeben.
5

Das Projekt cITIcar: autonomes Fahren als begleitende Lehr- und Lernplattform – auch in der Pandemie

Czekansky, Jakob, Schauer, Moritz, von Zabiensky, Florian, Bienhaus, Diethelm 27 January 2022 (has links)
Das Projekt cITIcar bietet ein breites Spektrum für das Lehrangebot im Bereich der (Technischen) Informatik und der Ingenieur-Informatik. Aus dem Themengebiet der Eingebetteten Systeme kann sowohl die Prototypenentwicklung als auch die Mikroprozessorprogrammierung und das Arbeiten mit Echtzeitsystemen am cITIcar erlernt werden. Typische Aufgaben aus der Regelungstechnik können am Fahrzeug durchgeführt und verschiedene Probleme aus der Längs- und der Querregelung von den Studierenden gelöst werden. Zusätzlich bietet das cITIcar Potential für Aufgaben aus dem Bereich der Computer Vision und des Machine Learnings: Fahrbahnranddetektion, Schilderkennung oder Fahrbahnsegementierung sind nur wenige Beispiele für Lehraufgaben am cITIcar. Sowohl die Lehrmodule als auch die Projektarbeit am cITIcar wurden durch die Pandemie vor neue Herausforderungen gestellt. Um die Onlinelehre im Projekt zu verbessern, wurden verschiedene Werkzeuge und Techniken in der Lehre integriert. In dieser Arbeit werden diese Werkzeuge und Techniken, sowie die damit gewonnenen Erfahrungen dargelegt.
6

goG - die Neue Urbane Mobilität

Höhne, Hans-Georg 09 September 2021 (has links)
Es wird ein umfassendes Verkehrskonzept für das urbane Umfeld beschrieben, welches durch den neuen kollaborativen Fahrzeugtyp mit dem Namen goG [go 'dschi] ermöglicht wird. Fahrzeuge dieses Typs können sich nahtlos im bestehenden Straßenverkehr eingliedern, ohne dass daran Anpassungen vorzunehmen sind. Auf Grund seiner kollaborativen Fähigkeiten können goGs aber auch zu Konvois des ÖPNVs formiert werden und annähernd 80% der im Vergleich für PKWs benötigten Parkplatzfläche einsparen. Des weiteren befähigen sie das goG in voller Fahrt von der Straße an eine über der Straße verlaufenden Umlaufseilbahn zu wechseln. Ein gittergleiches Netzwerk solcher Seilbahnen erlaubt das automatische Durchrouten von goGs 6 Meter über dem Straßenniveau, bei einer konstanten Geschwindigkeit von 50 km/h. An Seilbahnknotenpunkten werden durch Manipulatoren die goGs in voller Fahrt von einer Seilbahn in die vorgesehene nächste Seilbahn umgehängt. Durch hängebrückenartige Aufhängung der Umlaufseilbahnen oberhalb bestehender Straßenzüge werden keine zusätzlichen Flächen benötigt. Der Durchsatz einer Fahrbahn vergrößert sich durch die darüber geführte Umlaufseilbahn um mehr als das Doppelte. Ein autonomes Fahren bei maximal 6km/h zur nächsten goG-Linie des ÖPNV bzw. Seilbahn führt zu einer Vielzahl von Synergieeffekten.
7

Analyse notwendiger Anforderungen an das Autonome Fahren im Automobilbereich und Übertragbarkeit auf Baumaschinen

Schubert, Torsten, Bäker, Bernard 07 January 2016 (has links)
Das autonome Fahren ist derzeit aufgrund zahlreicher aktueller Forschungs- und Entwicklungsprojekte namhafter Automobilhersteller und -zulieferer im Fokus des öffentlichen Interesses. Der stetige Fortschritt des autonomen Fahrens kann unter anderem auf der jährlich in Las Vegas stattfindenden Consumer Electronics Show (CES) festgestellt werden, welche seit einiger Zeit auch von Automobilherstellern als Plattform zur Vorstellung neuer Technologien genutzt wird. So demonstrierte die Audi AG einen A7, der vollständig autonom vom Silicon Valley eine Strecke von 900 km Länge nach Las Vegas fuhr. Darüber hinaus legen auch automobilfremde Hochtechnologiekonzerne ihr Interesse an dieser Schlüsseltechnologie offen und präsentieren eigene Forschungs- und Entwicklungsarbeiten. Google verkündete die Forschung an einem eigenen autonomen Fahrzeug und auch Spekulationen über das Interesse von Apple wurden medial publik. Dennoch stehen die rasante Entwicklungsgeschwindigkeit und die öffentlich bereits präsentierte Funktionsfähigkeit des Autonomen Fahrens im Kontrast zu der geringen Anwendung im deutschen Straßenverkehr. In Deutschland und anderen Ländern sind bisher nur Pilotprojekte aus Forschung und Entwicklung existent. Diese unterliegen aktuell noch vielen Restriktionen. Dies macht deutlich, dass trotz der bisher erreichten Einzelerfolge dieser Technologie keine Serienreife besteht. So müssen für den tatsächlichen Einsatz des Autonomen Fahrens im Straßenverkehr technologische, soziologische sowie gesetzliche Rahmenbedingungen eingehalten, erweitert, angepasst, respektive erst noch definiert wer-den. Insbesondere im urbanen Umfeld besteht hier hoher Forschungsbedarf auch im Hin-blick auf technologische Rahmenbedingungen. Die vorliegende Arbeit soll einen Einblick über offene Fragestellungen und technologische Hürden sowie deren Bedeutung für das Autonome Fahren ermöglichen. Zudem wird ein kurzer Überblick darüber gegeben, wie dies auf den Sektor der Baumaschinen übertragbar ist.:1. Autonomes Fahren im Automobil 1.1. Stufen der Automation nach SAE-Standard J3016 1.2. Einführungsstrategien für autonome Fahrfunktionen 2. Rahmenbedingungen des Autonomen Fahrens 2.1. technologische Rahmenbedingungen 2.1.1. Umfeldwahrnehmung 2.1.2. Kooperation der Verkehrsteilnehmer 2.1.3. Hochgenaue Karten und Lokalisierung 2.1.4. Herausforderung für die Absicherung und Systemarchitektur 2.2. Soziologische Rahmenbedingungen 2.2.1. Vertrauen des Fahrers in die Technik und Fahrerüberwachung 2.2.2. Dilemmasituationen 2.3. Gesetzliche und rechtliche Rahmenbedingungen 2.3.1. ECE-R79 und Wiener Übereinkommen 2.3.2. Datenschutz und Datensicherheit 2.3.3. Haftung 3. Übertragbarkeit auf Baumaschinen 3.1. Aktuelle Entwicklungen und Beispiele 3.2. Bezug zum Automobil 3.3. Use-Case Straßenbau/Asphaltbau 3.4. Übertragbarkeit von Rahmenbedingungen 4. Fazit Quellenverzeichnis
8

Analyse der Laserscanner-basierten Spurwechseldetektion im Kontext des hochautomatisierten Fahrens

Zeisler, Jöran H. 13 July 2022 (has links)
Mit der Einführung hochautomatisierter Assistenzfunktionen soll Fahrzeugführern in naher Zukunft eine Abwendung von der Fahraufgabe ermöglicht werden. Neben der Steigerung des individuellen Komforts besteht die Erwartung an eine gleichzeitig erhöhte oder zumindest vergleichbare Sicherheitsbilanz im weiterhin öffentlichen Straßenverkehr. Um eine langfristige, systemische Verantwortungsübernahme zur Verkehrsbeobachtung und Reaktion zu realisieren, muss die durchgängige Beherrschbarkeit erwartbarer Situationen ohne Fahrereingriff in der ausgewiesenen Betriebsdomäne sichergestellt werden. Für die Motor- und Bremsenansteuerung des Egofahrzeugs ist dabei die Erfassung und Auswahl relevanter Verkehrsteilnehmer eine entscheidende Herausforderung - insbesondere bei Einschermanövern in die eigene Spur. Sie kann je nach Kritikalität der eintretenden Situation und in Abhängigkeit von der Reaktionsfähigkeit zur Kollision führen. Den technisch-sicherheitsrelevanten Anforderungen zur Realisierung einer fahrerlosen Steuerung stehen den Automobilherstellern dabei u.a. die wirtschaftlichen und normativen Vorgaben gegenüber: Unter Verwendung zahlreicher Steuergeräte und Sensoren, die vorverarbeitete Informationen der erfassten Objekte liefern, muss eine hinreichende Erfüllung der gesetzlichen und marktspezifischen Anforderungen zum Serieneinsatz unter gleichzeitiger Berücksichtigung des Aufwands erfolgen. Ziel der vorliegenden Arbeit ist die Analyse der notwendigen sensorischen Leistungsfähigkeit zur rechtzeitigen Detektion von Spurwechseln anderer Verkehrsteilnehmer in der Betriebsdomäne einer hochautomatisierten Fahrfunktion zur Ermöglichung einer kollisionsvermeidenden Bremsreaktion. Neben der Darstellung der spezifischen Anforderungen dieser Assistenzstufe im Vergleich zu in Serie befindlichen Systemen wird im ersten Schritt die menschliche Leistungsfähigkeit aus zwei Simulatorstudien bestimmt, um eine Vergleichbarkeit der Risikobilanz für die nachfolgenden Modelle zu ermöglichen. Im nächsten Schritt werden aus den analysierten Eigenschaften der Spurwechselcharakteristik, den Normen zur Straßenanlage und den Bewegungen des sensortragenden Egofahrzeugs die Anforderungen an den sensorisch abzudeckenden Merkmalsraum formuliert. Unter Zuhilfenahme einer existierenden, algorithmischen Modellierung mittels Bayesschen Netzen können die sensorischen Daten zur Erkennung des Spurwechselvorgangs probabilistisch überführt werden. Die Parametrierung des Modells wird im Umfang dieser Arbeit unter Einbezug von Realdaten maschinell trainiert und eine Steigerung der Sensitivität ermöglicht. Für die individuellen, fehlerbehafteten sensorischen Eingangsgrößen wird folglich die Eignung im Gesamtkontext der Spurwechselerkennung simulativ untersucht und in Feldversuchen mit übergeordneter Genauigkeit bewertet. Dabei wird abschließend der für den Automobileinsatz bestimmte und einführend vorgestellte Laserscanner Ibeo ScaLa evaluiert. Die Bewertung der ermittelten Genauigkeiten der Objektdetektion sowie der bereitgestellten Fehlerschätzung erfolgen in Bezug zur erwarteten Risikobilanz des hochautomatisierten Fahrens. Als Ergebnis dieser Arbeit kann für die Spurwechseldetektion anderer Verkehrsteilnehmer neben der ermittelten Reaktionsleistung menschlicher Fahrer auch die damit verbundene, weitreichende Anforderungserfüllung für den betrachteten Laserscanner attestiert werden. Die in Extremfällen fehlende Abdeckung im Randbereich des Sichtfeldes lässt sich durch einfache Erweiterungen in der Fahrstrategie der hochautomatisierten Betriebsdomäne beherrschen. Die experimentell ermittelten Gütemaße erlauben eine Detektion der erwartbaren Spurwechsel bis zu einer durch das verbesserte Modell limitierten Dynamikgrenze. Kollisionen können bei kritischen Spurwechseln bis zu dieser Einschränkung vermieden werden.
9

Autonomes Fahren

Fraedrich, Eva 12 June 2018 (has links)
Autonomes Fahren könnte Autonutzung und -besitz grundlegend verändern – mit erheblichen Auswirkungen darauf, wie mit dem Automobil umgegangen wird, wie Mobilität und Verkehr künftig organisiert und städtebauliche und Verkehrsinfrastrukturen gestaltet werden. Ziel der Arbeit ist es, zu einer frühzeitigen und umfassenden Auseinandersetzung mit der Technik aus empirisch-sozialwissenschaftlicher Sicht beizutragen, sowie wesentliche Einflussfaktoren und Dynamiken der Technikentwicklung zu identifizieren, um diese gestaltend begleiten zu können. Bei technologiebasierter Entwicklung ist eine Vorhersage von möglichen Entwicklungspfaden schwierig, und Akzeptanz gilt als Schlüsselfaktor für die erfolgreiche Produkteinführung. Sie vollzieht sich mittels soziotechnischer Konstruktions- und Veränderungsprozesse und ist abhängig von Personen, deren Einstellungen, Erwartungen und Handlungen, ihrer Umwelt, ihrer Werte- und Normrahmungen sowie Veränderungen im Laufe der Zeit. Diese Parameter werden in der Debatte derzeit noch wenig beachtet. Verschiedene qualitative Methoden bilden die Grundlage für eine erste Exploration und Strukturierung des noch wenig bekannten Untersuchungsgegenstands. Die Ergebnisse zeigen, dass Akzeptanz des autonomen Fahrens wesentlich vom Zusammenspiel individueller und gesellschaftlicher Einflussfaktoren abhängt – die nicht alleine über Einstellungsparameter erfasst werden können. Sie lassen sich erst vor dem Hintergrund von handlungsleitenden, kollektiven Orientierungen zu aktuellen Autonutzungspraktiken verstehen. Gleichzeitig ist ein konsistenter, in sich geschlossener Entwicklungspfad zum autonomen Fahren derzeit noch nicht absehbar, und es sind einerseits Entwicklungen möglich, die das System der Mobilität grundlegend verändern könnten. Andererseits sind aber auch Veränderungen denkbar, die das bestehende System eher ergänzen, als es radikal zu transformieren. Vor diesem Hintergrund ergeben sich je spezifische Implikationen für die weitere Forschung. / Autonomous driving could fundamentally transform car use and ownership and considerably change the way how we interact with the automobile, how mobility and transport are organized in the future and how urban and transportation infrastructures are designed. The objective of this study is to engage empirical, social sciences in a timely and comprehensive debate on autonomous driving, so the key factors and dynamics of this technological development can be identified and shaped. Forecasting development trajectories of technology-based developments proves especially difficult, and acceptance is thought to be a key factor for a successful product implementation. Acceptance takes place in the context of sociotechnical construction and transformation processes; it is dependent on individuals, their attitudes, expectations and actions, their environment, their value- and norm-framing, and on changes over time. User perception, evaluation and contextualization in relation to autonomous driving have largely gone unheeded, even though they are deemed central to technology acceptance. A set of distinct qualitative methods served to explore and structure a research topic little known to date. In sum, the results indicate that acceptance of autonomous driving fundamentally relies on the interaction of individual and societal factors that cannot be determined through attitudinal parameters only. They are better understood against the background of implicit and habitual orientations towards current car use and ownership practices. At the same time, the studies have shown that a consistent and determined development path cannot be predicted yet. While there are chances for the mobility system to undergo a fundamental transformation with the implementation of autonomous vehicles – on both supply and demand sides – potential changes could also rather complement the existing system. Specific implications for future research will be discussed in the thesis.
10

Einen Roboter das Fahren Lehren - ein auf Fähigkeitslernen basierter Ansatz / Teaching a Robot to Drive - A Skill Learning Inspired Approach

Markelic, Irene 06 August 2010 (has links)
No description available.

Page generated in 0.0612 seconds