1 |
Convective Cores in Continental and Oceanic Thunderstorms: Strength, Width, and DynamicsMcCarthy, Alexander Michael 11 October 2017 (has links)
No description available.
|
2 |
Land-atmosphere Interaction: from Atmospheric Boundary Layer to Soil Moisture DynamicsYin, Jun January 2015 (has links)
<p>Accurate modeling of land-atmosphere interaction would help us understand the persistent weather conditions and further contribute to the skill of seasonal climate prediction. In this study, seasonal variations in radiation and precipitation forcing are included in a stochastic soil water balance model to explore the seasonal evolution of soil moisture probabilistic structure. The theoretical results show soil moisture tends to exhibit bimodal behavior only in summer when there are strong positive feedback from soil moisture to subsequent rainfall. Besides the statistical analysis of soil moisture – rainfall feedback, simplified mixed-layer models, coupled with soil-plant-atmosphere continuum, are also used to study heat flux partitioning, cloud initiation, and strength of moist convection. Approximate analytical solutions to the mixed-layer model are derived by applying Penman-Monteith approach, which help explain the roles of equilibrium evaporation and vapor pressure deficit in controlling the diurnal evolution of boundary layer. Results from mixed-layer model also define four regimes for possible convection in terms of cloud/no-cloud formation and low/high convection intensity. Finally, cloud-topped mixed-layer model is developed to simulate the boundary-layer dynamics after the cloud formation, when the evaporative and radiative cooling other than surface heat flux may significantly contribute to the growth of the boundary layer.</p> / Dissertation
|
3 |
Particles in a linearly stratified fluidKhushal Ashok Bhatija (8081558) 04 December 2019 (has links)
The settling of spherical and cylindrical particles in a linearly stratified fluid is investigated using experiments. The double-tank method is used to generate a linear stratification with a red colored dye homogeneously mixed in the heavy water tank. As a result of feeding the stratification using dyed heavy water, the concentration of dye varies with depth in the experiment tank. A powerful back-light and a digital camera are used to record the events. Assuming the concentration of dye is directly proportional to density of fluid, Beer-Lambert's law is used to generate a calibration between intensity of the light measured by the camera and density of the fluid. Using this calibration, density is evaluated in all the images captured. In the parameter space of this study, the spheres have three different wake patterns. The area of fluid disturbed by a suspension of spheres increases with <i>Re</i> and <i>Fr</i>. As a result, the amount of energy available for the mixing and the irreversible change of total potential energy in the system increases with <i>Re</i>, <i>Fr</i> and number of particles. Cylinders drag volumes of light fluid to larger depths in their wake than spheres and shed the light fluid in the form of vortices. This results in lower volumes of fluid perturbed by the cylinders. However, as the light fluid is dragged to larger depths, the amount of energy generated for mixing and the change in total potential energy of the system is higher. Spheres are thus more efficient in disturbing volumes of fluid but cylinders are more efficient in causing irreversible changes to the state of the system.
|
4 |
Variation Of Marine Boundary Layer Characteristic Over Bay Of Bengal And Arabian SeaRai, Deepika 08 1900 (has links) (PDF)
The atmospheric boundary layer (ABL) is the lowest layer of the atmosphere where surface effects are felt on time scales of about an hour. While its properties are determined by the surface characteristics, season and synoptic conditions, they in turn determine convective cloud properties and are required for the representation of cloud processes in atmospheric models. Further, interaction of the ABL with the surface layer of the ocean is a key component of ocean-atmosphere coupling. ABL characteristics over ocean surrounding the sub-continent become very important for understanding the monsoon processes during the monsoon season because the roots of many monsoon systems, that give rain to India, are over there.
In this thesis data used are from three major field experiments namely the Bay of Bengal Monsoon Experiment (BOBMEX, 1999), Arabian Sea Monsoon Experiment (ARMEX, in two phases, ARMEX-I during 2002 and ARMEX-II in 2003), and Continental Tropical Convergence Zone (CTCZ) experiment (Pilot in 2009) which were carried out under the Indian Climate Research Programme (ICRP). While there have been few studies on ABL characteristics for individual cruises, a comprehensive study considering all available radiosonde data from the above cruises has been missing. This study fills this gap and focuses on the vertical structure of ABL using more than 400 high resolution Vaisala GPS radiosonde data collected over Bay of Bengal and Arabian Sea.
The study attempts at first to look at the ABL characteristics of individual cruises and then compare and contrast them over the Bay of Bengal and Arabian Sea. ABL height Hm, estimated by using virtual potential temperature (θv) profile, shows diurnal variation during weak phase of convection while maximum in early morning during active phase of convection. Different variables i.e. moist static energy (h), specific humidity (q),
convective available potential energy (CAPE), virtual potential temperature (θv) and equivalent potential temperature (θe) also differ during weak and active convection periods. Conserved variables mixing line approach gives the height up to which ground thermals penetrate in the vertical. This height, denoted by MH that represents the actual ABL height, is 2-3 times larger than Hm when shallow convective clouds are present. In general both Hm and MH are 20-30% larger over Arabian Sea compares to that over Bay of Bengal. Comparison of surface convective available potential energy (CAPE) and equivalent potential temperature (θe) between normal and deficit monsoon years shows that convective instability was as large in deficit years. This means that dynamic and not thermodynamics, controlled the occurrence of convection.
|
Page generated in 0.0941 seconds