• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Optimization of a Sodium-Molten Salt Heat Exchanger for Concentrating Solar Power applications

Guccione, Salvatore January 2020 (has links)
Concentrating Solar Power (CSP) is one of the most promising renewable energybased electricity generation technologies to deal with the increasing demand of power consumption and environmental sustainability. With the aim of achieving the 2020 SunShot cost target for CSP of 60 USD/MWh, the United States Department of Energy presented, in May 2018, the Gen3 CSP initiative. In particular, the CSP Gen3 Liquid-Phase Pathway proposes to design a CSP system adopting liquid sodium as Heat Transfer Fluid (HTF) in the receiver, advanced high-temperature molten chloride salt as storage fluid and supercritical CO2 (sCO2) Brayton cycle as power cycle. Within this framework, the aim of this master thesis was to design the sodium-chloride salt Heat Exchanger (HX) by developing both a heat exchanger model and a sodiumsalt-sCO2 system model. To pursue these purposes, a completely new Modelica-based HX model was developed and added to the SolarTherm library. Furthermore, as an extension of earlier models, the sodium-salt-sCO2 CSP system (NaSaltsCO2System) was implemented in SolarTherm, by incorporating the HX model and linking it with other new and existing component models. As for the HX, a general model was developed for shell and tube heat exchangers, based on the TEMA guidelines, with the possibility of being customized in terms of media adopted, constraints, boundary conditions, and correlations. The model performs an optimization in order to select the internal geometry configuration that optimizes a user-defined objective-function. By employing the implemented HX model in the NaSaltsCO2System, the sodium-salt heat exchanger was designed aiming at minimizing the Levelized Cost of Electricity (LCOE), providing a complete geometry description, and an estimation of the performances and costs. The resulting NaSaltsCO2System model was found to be robust and able to perform annual simulations that allowed to estimate the energy performances of the CSP plant, as well as the LCOE. Considering the sodium-salt-sCO2 CSP system characterized by a receiver capacity of 543 MWth, 12 hours of Thermal Energy Storage (TES), and a 100 MWe power block, the LCOE resulted equal to 72.66 USD/MWh. The sodium-salt HX design that minimizes the LCOE resulted in a single-shell/single tube pass configuration, with vertical alignment, characterized by an overall height of 15 m, and a shell diameter of 1.8 m. It represents the 3.2% of the total capital cost of the plant. An interesting system-level optimization was then carried out on the combined receiver-heat exchanger block. It regarded the variation of the Log Mean Temperature Difference (LMTD) of the HX and highlighted the possibility to drop the LCOE down to 68.54 USD/MWh. The techno-economic investigations and the sensitivity analysis showed the flexibility and robustness of the HX model, as well as the importance of the NaSaltsCO2System. The latter lays the groundwork to explore potential improvements of this new generation of CSP systems, which can play a fundamental role in the future global energy mix. / Termisk solkraft (CSP) är en av de mest lovande elproduktionsteknologierna baserade på förnybar energi. Den kan bidra till hanteringen av den ökande efterfrågan på energi och miljömässig hållbarhet. I syfte att uppnå 2020 SunShot-kostnadsmålet för CSP på 60 USD/MWh presenterade USA:s energidepartement Gen3 CSPinitiativet. I synnerhet föreslår CSP Gen Liquid-Phase Pathway att utforma ett CSPsystem som använder flytande natrium som värmeöverföringsvätska i mottagaren, smält kloridsalt med hög temperatur som lagringsvätska, samt superkritisk CO2 (sCO2) Brayton-cykel som kraftcykel. Syftet för detta examensarbete var att utforma natriumkloridsaltets primära värmeväxlare genom att utveckla både en värmeväxlarmodell (HX) modell och en natriumsalt-sCO2-systemmodell. För att fullfölja dessa syften utvecklades HX-modellen först, sedan implementerades natriumsalt-sCO2 CSP-systemet NaSaltsCO2System. Båda verktygen utvecklades med hjälp av Modelica som programmeringsspråk. De finns nu tillgängliga i det öppna SolarTherm-biblioteket. När det gäller HX utvecklades en allmän modell för skal- och rörvärmeväxlare med möjligheten att anpassas när det gäller antagna medium, begränsningar, gränsvillkor och korrelationer. Dessutom utförde modellen en optimering för att välja den interna geometri-konfigurationen som optimerar en användardefinierad objektiv-funktion. Genom att använda den implementerade HX-modellen i NaSaltsCO2System designades natriumsalt-värmeväxlaren, vilket gav en fullständig konfiguration-beskrivning och en uppskattning av prestanda och kostnader. Den utvecklade NaSaltsCO2System-modellen visade sig vara robust och kapabel till att utföra simuleringar på årsbasis. Detta gjorde det möjligt att uppskatta CSP-anläggningens energiprestanda samt LCOE. Det utvecklade natriumsalt-sCO2 CSP-systemet som känneteckna des av en mottagarkapacitet på 543 MWth, 12 timmars TES och ett 100 MWe power block, resulterade i en LCOE på 72.66 USD/MWh. Natrium-salt HX-konstruktionen som minimerade LCOE resulterade i en enskalig/enkel rörpassningskonfiguration, med vertikal inriktning, kännetecknad av en total höjd av 15 m och en skaldiameter på 1.8 m. Det motsvarade 3.2% av anläggningens totala kapitalkostnad. Den mest intressanta systemoptimeringen genomfördes på det kombinerade blocket bestående av mottagare och värmeväxlare. Den behandlade variationen av HX:s LMTD och framhöll möjligheten att sänka LCOE till 68.54 USD/MWh. De teknisk-ekonomiska undersökningarna och känslighetsanalysen visade flexibiliteten och robustheten i HX-modellen, liksom vikten av NaSaltsCO2Systemet. Den senare lägger grunden för att utforska potentiella förbättringar av denna nya generation av CSP-system, som kan spela en grundläggande roll i den framtida globala energimixen.

Page generated in 0.0581 seconds