91 |
Avian influenza A viral genetic determinants of cytokine hyper-induction in primary human macrophagesMok, Ka-pun, Chris., 莫家斌. January 2009 (has links)
published_or_final_version / Microbiology / Doctoral / Doctor of Philosophy
|
92 |
Lab-on-a-Chip Optical Immunosensor for Pathogen DetectionHeinze, Brian Carl January 2010 (has links)
This dissertation develops technology for microfluidic point-of-care (POC) immunoassay devices, divided into three papers, and explores the use of a quartz crystal microbalance for real time monitoring of blood coagulation in a fourth paper. The concept of POC testing has been well established around the world. With testing conveniently brought to the vicinity of the patient or testing site, results can be obtained in a much shorter time. There has been a global push in recent years to develop POC molecular diagnostics devices for resource-limited regions where well equipped centralized laboratories are not readily accessible. POC testing has applications in medical/veterinary diagnostics, environmental monitoring, as well as defense related testing. In the first paper, we demonstrated the use of latex immunoagglutination assays within a microfluidic chip to be an effective and sensitive method for detecting the bovine viral diarrhea virus. In the second paper the feasibility and general ease of integrating liquid core optical components onto a microfluidic lab-on-a-chip type device, for point-of-care AI diagnosis is demonstrated. In the third paper particle agglutination assays, utilizing light scattering measurements at a fixed angle from incident light delivery, for pathogen detection are explored in both Rayleigh and Mie scatter regimes through scatter intensity simulations and compared to experimental results. In the fourth paper a quartz crystal microbalance was used for real-time monitoring of fibrinogen cross-linking on three model biomaterial surfaces.
|
93 |
Comparative population dynamics of wild and reared pheasants (Phasianus colchicus)Woodburn, Maureen I. A. January 1999 (has links)
No description available.
|
94 |
The role of PB2 gene in determining the host range of influenza A virusYao, Yongxiu January 2001 (has links)
No description available.
|
95 |
Mate choice in reed buntings (Emberiza schoeniclus)Buchanan, Graeme Murray January 2001 (has links)
No description available.
|
96 |
Patterns of diversification revealed by phylogeniesMooers, Arnie Øyvind January 1994 (has links)
No description available.
|
97 |
Transmission dynamics of Avian Influenza A virusLu, Lu January 2015 (has links)
Influenza A virus (AIV) has an extremely high rate of mutation. Frequent exchanges of gene segments between different AIV (reassortment) have been responsible for major pandemics in recent human history. The presence of a wild bird reservoir maintains the threat of incursion of AIV into domestic birds, humans and other animals. In this thesis, I addressed unanswered questions of how diverse AIV subtypes (classified according to antigenicity of the two surface proteins, haemagglutinin and neuraminidase) evolve and interact among different bird populations in different parts of the world, using Bayesian phylogenetic methods with large datasets of full genome sequences. Firstly, I explored the reassortment patterns of AIV internal segments among different subtypes by quantifying evolutionary parameters including reassortment rate, evolutionary rate and selective constraint in time-resolved Bayesian tree phylogenies. A major conclusion was that reassortment rate is negatively associated with selective constraint and that infection of wild rather than domestic birds was associated with a higher reassortment rate. Secondly, I described the spatial transmission pattern of AIV in China. Clustering of related viruses in particular geographic areas and economic zones was identified from the viral phylogeographic diffusion networks. The results indicated that Central China and the Pearl River Delta are two main sources of viral out flow; while the East Coast, especially the Yangtze River delta, is the major recipient area. Simultaneously, by applying a general linear model, the predictors that have the strongest impact on viral spatial diffusion were identified, including economic (agricultural) activity, climate, and ecology. Thirdly, I determined the genetic and phylogeographic origin of a recent H7N3 highly pathogenic avian influenza outbreak in Mexico. Location, subtype, avian host species and pathogenicity were modelled as discrete traits and jointly analysed using all eight viral gene segments. The results indicated that the outbreak AIV is a novel reassortant carried by wild waterfowl from different migration flyways in North America during the time period studied. Importantly, I concluded that Mexico, and Central America in general, might be a potential hotspot for AIV reassortment events, a possibility which to date has not attracted widespread attention. Overall, the work carried out in this thesis described the evolutionary dynamics of AIV from which important conclusions regarding its epidemiological impact in both Eurasia and North America can be drawn.
|
98 |
Plumage Ornamentation as an Indicator of Female Age and an Influence in Male Mate Choice in Protonotaria Citrea, the Prothonotary Warbler in Virginia.Smith, Terry 18 June 2008 (has links)
Flamboyant plumage and ornamentation is common and well-known in male birds; it serves as a sexual display to attract potential mates. While flamboyant plumage is less common and usually more subtle in female birds, it does occur in some species such as Dark-Eyed Juncos (Junco hyemalis) and Prothonotary Warblers (Protonotaria citrea). Prothonotary Warblers display relatively subtle sexual dimorphism. This study examines variations in tail spot patterns in Prothonotary Warblers and relates those variations to age in females. Females with fewer than six spots tend to be two years old or younger; females with six spots or more tend to be three years old or older. The tail spot numbers of mated pairs were also analyzed. Statistical analyses indicate that males mate with females with six tail spots more often than they mate with females with other numbers of tail spots. This suggests males prefer females who are at least three years old.
|
99 |
Retinoic acid Treatment Affects Kidney Development and Osmoregulatory System in the Developing Chicken (Gallus Gallus)Alvine, Travis Douglas 05 1900 (has links)
Development is a dynamic process characterized by critical periods in which organ systems are sensitive to changes in the surrounding environment. In the current study, critical windows of embryonic growth and kidney development were assessed in the embryonic chicken. All‐trans retinoic acid (tRA) influences not only organogenesis and cell proliferation, but also targets metanephric kidney nephrogenesis. Embryonic chickens were given a single injection of tRA on embryonic day 8. tRA decreased embryo, kidney, and heart mass from day 16 to day 18. However, mass specific kidney and heart masses showed no differences. Whole blood, plasma, and allantoic fluid osmolality were altered in tRA treated embryos from day 16 to day 18. In addition, hematocrit, red blood cell count, and hemoglobin concentration were altered in tRA treated embryos. The results suggest that although nephrogenesis was not affected by tRA, the developing osmoregulatory system was altered in tRA treated embryos.
|
100 |
Functions of receptor activator of NF-κB ligand (RANKL) and its receptors, RANK and OPG, are evolutionarily conservedSutton, Kate Maurice January 2014 (has links)
The tumour necrosis factor (TNF) superfamily is a group of cytokines that orchestrate a variety of functions, both in the development of the architecture of immune organs and of the immune response. The mammalian TNF superfamily consists of 19 ligands and 29 receptors, whereas in the chicken only 10 ligands and 15 receptors are present. Chickens do not develop lymph nodes, possibly due to the absence of the lymphotoxin genes (TNF superfamily members) in their genome. New members of the chicken TNF superfamily have recently been identified in the genome, namely chicken receptor activator of NF-κB ligand (chRANKL), its signalling receptor, chRANK, and its decoy receptor, osteoprotegerin (chOPG). In mammals, RANKL and RANK are transmembrane proteins expressed on the surface of Th1 cells and mature dendritic cells (DC), respectively. OPG is expressed as a soluble protein from osteoblasts and DC, regulating the interaction between RANKL and RANK. To investigate the bioactivity of this triad of molecules, the extracellular soluble domains of chRANKL and chRANK and full-length chOPG were identified and cDNAs cloned. ChRANKL, chRANK and chOPG mRNA are ubiquitously expressed across non-lymphoid and lymphoid tissues and immune cells in the chicken. Similar to mammals, chRANK and chOPG mRNA expression levels are upregulated in mature bone marrow-derived DC (BMDC). ChRANKL transcription is regulated by Ca2+-mobilisation and is further enhanced by the activation of the protein kinase C pathway, as seen in mammals. The biological activities of chRANKL, chRANK and chOPG were investigated by the production of recombinant soluble fusion proteins. The extracellular, TNF-homology, domain of chRANKL (schRANKL) was sub-cloned into a modified pCI-neo vector expressing an in-frame isoleucine zipper to encourage trimer formation. FLAG-tagged schRANKL produced in COS-7 cells predominantly forms homotrimers and chOPG is expressed as homodimers, both signatures of their mammalian TNF superfamily orthologues. SchRANKL enhances the mRNA expression levels of pro-inflammatory cytokines in mature BMDC and BM-derived macrophages (BMDM). Pre-incubation with soluble chRANK-Fc or chOPG-Fc blocked the schRANKL-mediated increase in pro-inflammatory cytokine mRNA expression levels in BMDC. Expression of surface markers on BMDC and BMDM were not affected by schRANKL treatment. SchRANKL enhances the survival rates of BMDC and BMDM and can drive osteoclast differentiation from monocyte/macrophage progenitor cells. The chRANKL signalling receptor, chRANK, does not contain an intracellular catalytic domain but requires the binding of intracellular TNF receptor-associated factors (TRAF) to initiate signalling. TRAFs are a family of seven proteins (TRAF1-7) grouped due to their highly conserved RING domains, zinc finger domains, TRAF-N and TRAF-C domains. ChRANK possesses four of the five TRAF peptide-binding motifs found in mammalian RANK. The "missing" chRANK TRAF peptide-binding motif is TRAF6-specific, a vital protein for RANKL-mediated osteoclastogenesis. All seven members of the mammalian TRAF family are present in the chicken genome. To investigate the conservation of RANK-specific TRAF signalling proteins, chicken TRAF2 (chTRAF2), chTRAF5, chTRAF6 and a newly found member, chTRAF7, were identified and their cDNAs cloned. ChTRAF5, chTRAF6 and chTRAF7 had mRNA expression patterns, in non-lymphoid and lymphoid tissues and in a number of immune cells, similar to their orthologues in mammals. Interestingly, chTRAF2 has two variants, the full-length chTRAF2 and a novel isoform (chTRAF2S) lacking exon 4. ChTRAF2S lacks a portion of zinger finger one, all of zinc finger two and a portion of zinc finger three, producing a protein with a hybrid of zinc fingers 1 and 3 and intact zinc fingers 4 and 5. RT-PCR analyses indicated differential expression of both of the chTRAF2 isoforms in a number of non-lymphoid and lymphoid tissues, splenocyte subsets and in a kinetic study of ConA-stimulated splenocytes. ChTRAF2S is biologically active compared to chTRAF2, inducing higher levels of NF-κB activation. Co-transfections indicate that chTRAF2 may regulate chTRAF2S bioactivity as no synergistic effect was identified when cells were transfected with both isoforms. Knowledge gained from this study will help work to further dissect the interactions between chRANKL-expressing T cells and chRANK-expressing DC to drive Th1 immune responses and to understand how the chicken mounts an effective immune response while expressing a minimal essential repertoire of the TNF superfamily.
|
Page generated in 0.0421 seconds