• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 17
  • 16
  • 12
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 111
  • 19
  • 15
  • 13
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Study on the Tooth Contact Analysis of Gear Sets with Skew Axes

Rung, Bi-Jang 09 July 2003 (has links)
ABSTRACT Presently, many industrial applications of gear sets with skew axes, especially worm gear and hypoid gear, are most widely used. The main content of this thesis is to construct the contact analysis model of the line-contacted type tooth profile of gear sets with skew axes with assembly error. The influence of geometrical parameters of skew-axes gear to the transmission error is analyzed. The complex method for optimization is implemented to select the better skew-axes gear parameters with the best performance in transmission error with assembly error. To prove the presented analysis model, the optimized gear parameters are utilized to construct the solid model for analyzing the contact properties by using computer simulation program.
12

Energy modelling for machine tool axis and toolpaths

Edem, Isuamfon January 2017 (has links)
The manufacturing sector is one of the significant consumers of electricity, with about 42.3% (8249 TWh) of the global electricity consumption attributable to this sector. This electricity is generated from fossil fuels at the power stations, resulting in increased CO2 emission and subsequently global warming. Thus, energy efficiency could play a vital role in reducing electrical energy demand and environmental impacts in the manufacturing sector. Mechanical machining is one of the widely used techniques in manufacturing. Machine tools consist of auxiliary units, spindle, feed axes including the x-axis, y-axis, z-axis, and the tool change system which are the main electrical energy consumers. The feed axes control the relative motion between the workpiece and cutter, and also determine the workpiece geometry. In literature, a number of studies focused on the machining process as a whole, while the energy demand for axis and toolpaths was relatively unexplored. This PhD research was aimed at assessing the electrical energy demand in mechanical machining, focusing on feed motions and toolpaths in order to identify energy saving strategies of the machine tool. To achieve this, a current measurement device was used to acquire the current and voltage, from which the power and electrical energy requirements were evaluated. This study included (i) energy consumption analyses of the machine tool in different feed axes directions, (ii) cutting of components in different axes orientations (iii) and electrical energy demand studies of different toolpath strategies. From the study, a new method and model for predicting the electrical energy demand of feed axes was developed. This model encompasses the weights of feed axes, machine tool vice, and workpiece placed on the machine table. Moreover, the newly developed feed axes energy demand model was integrated into other energy consumption models to predict the energy demand for toolpaths. CNC toolpaths are generated manually or by computer aided manufacturing (CAM). Enabling an energy rating of CNC toolpaths is vital to be able to quantify energy demand, compare toolpaths, and develop energy demand reduction strategies. The results show that machining along the x-axis which carries minimal weights significantly reduced the energy demand of the feed drive, which in turn reduces the non-cutting energy demand of the machine tool. Thus, this Thesis contributes to the improvement of energy efficiency in machining through the development of a new and novel model and method for predicting the feed axes energy demand; determining the most efficient axes and component orientation; as well as the most efficient toolpath strategy for minimal energy demand in machining. This PhD Thesis has laid the foundation model and information source for a post processor to estimate energy demand from CNC toolpaths. Such a capability was not available in CAM software or on CNC machines.
13

Estudo e desenvolvimento de técnicas para o cálculo de curvaturas e eixos de simetria. / Study and development of techniques for curvature and symmetry axes calculation.

Leandro Farias Estrozi 25 July 2003 (has links)
Neste trabalho, estuda-se propriedades e implementações de duas importantes representações de formas denominadas curvatura e eixos de simetria (ou esqueletos), relacionando-as ao clássico modelo de processamento da informação visual proposto por Marr. Para tanto, fez-se necessária uma releitura dos critérios para a representação de formas já existentes, além da proposição e comparação de algumas abordagens numéricas através das quais curvaturas e esqueletos são calculados, com especial atenção dada a características como robustez e invariância. No caso da curvatura, que é uma medida clássica da geometria diferencial sem divergências quanto a sua definição e interpretação, foi dado maior enfoque à robustez dos métodos quanto à presença de ruídos de diversas naturezas e quanto a sensibilidade na escolha dos parâmetros que levaram aos resultados mais precisos. Além disso, propôs-se uma versão não-derivativa da curvatura (denominada circularidade local) a fim de contornar o problema advindo das instabilidades do cálculo de derivadas de dados reais amostrados. Ainda relativamente à curvatura, um método baseado na transformada de Fourier bidimensional foi proposto e comparado à abordagem unidimensional já estabelecida e a outro método padrão (&#946-Splines/ Medioni) de cálculo de curvatura de contornos digitais. Já no caso dos esqueletos, a existência de diversas interpretações geométricas e matemáticas para o conceito e as inúmeras abordagens numéricas para o cálculo dos mesmos demandaram a revisão da literatura sob a luz do modelo inicialmente introduzido para que se pudesse impor uniformidade à terminologia e situar as diferentes abordagens e implementações dentro de um panorama comum, sendo que dois novos métodos para o cálculo de esqueletos foram criados quando do desenvolvimento deste trabalho (esqueletos por dilatações exatas e esqueletos afins baseados em áreas). / In this work, properties and implementations of two important shape representa¬tions had been studied: curvature and symmetry axis (or skeletons) and they had been related to the Marr\'s classical visual information processing model. Thus, it was necessary a re-interpretation of previously existent criteria for shape represen¬tation in addition to the proposition and comparison of some numerical approaches for curvature and skeletons calculations with special attention given to robustness and invariance characteristics. In the curvature case, a classic measure from dif¬ferential geometry with no divergence about its definition and interpretation, we focused mainly on the numerical methods robustness in presence of several noise categories and on the best parameter set choice sensibility. Additionally, a no derivative version of curvature (also called local circularity) was proposed in order to circumvent problems related to the sampled real data derivatives numerical ins¬tabilities. Still talking about curvature, a 2D Fourier transform based method had been proposed and assessed in comparison to the 1D approach and other standard digital contour curvature calculation method (&#946-Splines/ Medioni). In the skeleton\'s case, the existence of several geometrical and mathematical interpretations of the concept and the innumerable numeric approaches to their calculation demanded a literature survey regarding the initially introduced model to impose uniformity to the terminology and to situate the different approaches and implementations into a common framework where two new methods to skeleton\'s calculations had been created (exact dilations based skeletons and area based affine skeletons).
14

Modélisation mécanique intégrant des champs répulsifs pour la génération de trajectoires 5 axes hors collision / A potential field approach for collision avoidance in 5-axis milling

Lacharnay, Virgile 21 November 2014 (has links)
Le processus de réalisation des pièces de formes complexes par usinage est un processus essentiel dans les domaines de l'aéronautique, de l'automobile, des moules et des matrices. Alors que l'usinage 5 axes grande vitesse est maintenant répandu dans les grands groupes industriels, il reste plusieurs problématiques à traiter. L'évitement de collisions le long de la trajectoire outil programmée en alors traité, notamment au niveau des interférences globales représentant une collision entre l'outil et son environnement. Classiquement, l'évitement de collisions dans le domaine de l'usinage 5 axes grande vitesse peut être programmé à l'aide d'une analyse géométrique de la situation. Si une collision est détecté, alors une phase de correction et d'optimisation peuvent être utilisée afin d'obtenir une nouvelle trajectoire hors collision. Le but des travaux est alors d'utiliser une modélisation physique afin d'obtenir une trajectoire corrigée hors collision le plus lisse possible. Pour ce faire le mouvement de l'outil est alors étudié d'un point de vue dynamique afin d'éviter les réorientation brutal post correction. De plus, les éléments constituants les obstacles émettent une action répulsive à distance. Cela permet, au cours de la programmation, d'anticiper l'approche d'un obstacle et ainsi d'entamer les corrections d'orientation outil en prévision d'une possible collision. Cette démarche de modélisation du mouvement étudiée permet alors de réaliser des simulations sur des pièces classiquement usinées dans les domaines énoncés précédemment. Dans le but de généraliser la programmation réalisée, il est alors important de comprendre comment les éléments obstacles sont représentés ainsi que la modélisation retenu pour l'outil utilisé au cours de la simulation. Enfin, la résolution de la dernière problématique mise en avant au cours de cette thèse concerne les temps de calcul obtenus. Il a été montré, après de multiples simulations, que ces derniers peuvent exploser d'un point de vue combinatoire pour des utilisateurs exigeants (modélisation fine de l'outil et de l'environnement). Une méthode de pré calcul est alors présentée utilisant la voxelisation permettant de diminuer les temps de calcul de manière très importante sans pour autant perdre de manière importante sur la solution obtenue. Le dernier objectif présenté est de proposer une approximation permettant de diminuer nettement les temps de calcul tout en conservant une assurance de non-collision. Cette méthode notée voxelisation consiste en utilisant une interpolation à diminuer le temps de calcul. L’important est alors de comprendre quels inconvénients se rattachent à la voxelisation et à partir de quand cette dernière apporte un résultat acceptable / Although 5-axis free form surfaces machining is commonly proposed in CAD/CAM software, several issues still need to be addressed and especially collision avoidance between the tool and the part. Indeed, advanced user skills are often required to define smooth tool axis orientations along the tool path in high speed machining. In the literature, the problem of collision avoidance is mainly treated as an iterative process based on local and geometrical collision tests. In this paper, an innovative method based on potential fields is used to generate 5-axis collision-free smooth tool paths. In the proposed approach, The ball-end tool is considered as a rigid body moving in 3D space on which repulsive force, deriving from a scalar potential field attached to the check surfaces, and attractive forces are acting. The resolution of the differential equations of the tool motion ensure smooth variations of the tool axis orientation. The proposed algorithm is applied on open pocket parts such as an impeller and a pocket corner to emphasize the effectiveness of this method to avoid collision. After that, it is possible to see that de calculation time can be very importante for a delicate mesh. It is for that, a voxelisation method is developed to decrease these.
15

Estudo das condições dimensionais e forças geradas no fresamento de aço endurecido / A study of the conditions and dimensional force generated in the milling hardened steel

Menezes, Luciano de Jesus, 1977- 12 December 2014 (has links)
Orientador: Amauri Hassui / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-26T13:19:17Z (GMT). No. of bitstreams: 1 Menezes_LucianodeJesus_M.pdf: 3153404 bytes, checksum: 2d45745d89221fa761d7b0111aaf819a (MD5) Previous issue date: 2014 / Resumo: A evolução dos sistemas CAD/CAM, das máquinas-ferramenta CNC e das geometrias e materiais das ferramentas de corte tem tornado possível desenvolver processos de fabricação de moldes e matrizes mais eficazes. Normalmente, a quantidade de horas necessárias para a usinagem dos componentes dessas ferramentas é elevada e, mesmo assim, muitos dos perfis complexos não são possíveis de serem usinados por completo em centro de usinagem 3 eixos, necessitando a utilização de outras máquinas e processos, como a eletro-erosão (EDM), retificadoras e polimento manual. A utilização do fresamento com máquinas de usinagem 5 eixos tem sido um dos caminhos para a usinagem dos componentes complexos de moldes e matrizes, de modo a minimizar o uso de máquinas e processos adicionais. Com a finalidade de contribuir para melhorar a eficiência da fabricação de moldes e matrizes, este trabalho tem como objetivo estudar as condições dimensionais e as forças geradas no fresamento do Aço AISI D6 endurecido a 58HRC, usinado em um centro de usinagem 5 eixos com fresa de topo esférica. A condição dimensional estudada está relacionada com o perfil geométrico do corpo de prova, composto por raio e superfície plana. O estudo foi realizado utilizando 10 estratégias de usinagem, variando-se o ponto de contato da ferramenta com o corpo de prova, o sentido de usinagem e a velocidade de corte. As análises práticas realizadas mostraram que existe relação entre a tolerância geométrica, o desgaste da ferramenta e as estratégias de corte adotadas. Além disso, as condições, máquinas e equipamentos utilizados nos ensaios de usinagens descendentes 3 eixos obtiveram melhores resultados de tempo de vida da ferramenta e condição dimensional do corpo de prova / Abstract: The development of CAD / CAM systems, CNC machine tools and materials and geometries of cutting tools has become possible to develop more efficient manufacturing processes of molds and dies. Usually the amount of hours required for machining of the components of these tools is high. Also, many of the complex profiles are not possible to be completely machined in 3-axis machine center, requiring the use of other machines and processes, such as electro-erosion (EDM), grinding and hand polishing. The use of milling machines with 5-axis machining has been one of the paths for machining complex components from molds and dies, so as to minimize the use of additional machines and processes. In order to contribute to improve the efficiency of manufacturing molds and dies, this work aims to study the dimensional requirements and the forces generated when milling Steel AISI D6 hardened to 58HRC, machined in a machining center with 5-axis milling spherical top. The dimensional condition studied is related to the geometric profile of the specimen, consisting of ray and flat surface. The study was conducted using 10 machining strategies, varying the tool point of contact with the specimen, the machining direction and the cutting speed. The practical analyzes showed that there is a relationship between the geometric tolerance, tool wear and cutting strategies adopted. In addition, the conditions, machinery and equipment used in the machining tests descendants 3 axes obtained better lifetime results tool and dimensional condition of the specimen / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
16

Establishing the Embryonic Axes: Prime Time for Teratogenic Insults

Sadler, Thomas W. 11 September 2017 (has links)
A long standing axiom in the field of teratology states that the teratogenic period, when most birth defects are produced, occurs during the third to eighth weeks of development post-fertilization. Any insults prior to this time are thought to result in a slowing of embryonic growth from which the conceptus recovers or death of the embryo followed by spontaneous abortion. However, new insights into embryonic development during the first two weeks, including formation of the anterior-posterior, dorsal-ventral, and left-right axes, suggests that signaling pathways regulating these processes are prime targets for genetic and toxic insults. Establishment of the left-right (laterality) axis is particularly sensitive to disruption at very early stages of development and these perturbations result in a wide variety of congenital malformations, especially heart defects. Thus, the time for teratogenic insults resulting in birth defects should be reset to include the first two weeks of development.
17

Knee Angles and Axes Crosstalk Correction in Gait, Cycling, and Elliptical Training Exercises

Skaro, Jordan M 01 May 2018 (has links) (PDF)
When conducting motion analysis using 3-dimensional motion capture technology, errors in marker placement on the knee results in a widely observed phenomenon known as “crosstalk” [1-18] in calculated knee joint angles (i.e., flexion-extension (FE), adduction-abduction (AA), internal-external rotation (IE)). Principal Component Analysis (PCA) has recently been proposed as a post hoc method to reduce crosstalk errors and operates by minimizing the correlation between the knee angles [1, 2]. However, recent studies that have used PCA have neither considered exercises, such as cycling (C) and elliptical training (E), other than gait (G) nor estimated the corrected knee axes following PCA correction. The hypothesis of this study is that PCA can correct for crosstalk in G, C, and E exercises but that subject-specific PCA corrected axes differ for these exercises. Motion analysis of the selected exercises were conducted on 8 normal weight (body mass index (BMI) = 21.70 +/- 3.20) and 7 overweight participants (BMI = 27.45 +/- 2.45). An enhanced Helen Hayes marker set with 27 markers was used to track kinematics. Knee joint FE, AA, and IE angles were obtained with Cortex (Motion Analysis, Santa Rosa, CA) software and corrected using PCA to obtain corrected angles for each exercise. Exercise-specific corrected knee joint axes were determined by finding axes that reproduced the shank and ankle body vectors taken from Cortex when used with the PCA corrected angles. Then, PCA corrected gait axes were used as a common set of axes for all exercises to find corresponding knee angles. Paired t-tests assessed if FE-AA angle correlations changed with PCA. Multivariate Paired Hotelling’s T-Square tests assessed if the PCA corrected knee joint axes were similar between exercises. ANOVA was used to assess if Cortex angles, PCA corrected angles, and knee angles using PCA corrected gait axes were different. Reduced FE-AA angle correlations existed for G (p<0.001 for Cortex and p=0.85 for PCA corrected), C (p=0.01 for Cortex and p=0.77 for PCA corrected), and E (p<0.001 for Cortex and p=0.77 for PCA corrected). Differences in the PCA corrected knee axes were found between G and C (p<0.0014). Then, differences were found between Cortex, PCA corrected, and C and E knee angles using the PCA corrected G axes (p<0.0056). The results of this study suggest that if PCA is used to reduce crosstalk errors in motions other than G then it is recommended to adopt the use of a PCA corrected axes set determined from G to produce the PCA corrected angles.
18

Positional adaptation reveals multiple chromatic mechanisms in human vision.

McGraw, Paul V., McKeefry, Declan J., Whitaker, David J., Vakrou, Chara January 2004 (has links)
No / Precortical color vision is mediated by three independent opponent or cardinal mechanisms that linearly combine receptoral outputs to form L/M, S/(L+M), and L+M channels. However, data from a variety of psychophysical and physiological experiments indicate that chromatic processing undergoes a reorganization away from the basic opponent model. Frequently, this post-opponent reorganization is viewed in terms of the generation of multiple ¿higher order¿ chromatic mechanisms, tuned to a wide variety of axes in color space. Moreover, adaptation experiments have revealed that the synthesis of these mechanisms occurs at a level in the cortex following the binocular integration of the inputs from each eye. Here we report results from an experiment in which the influence of chromatic adaptation on the perceived visual location of a test stimulus was explored using a Vernier alignment task. The results indicate that not only is positional information processed independently within the L/M, S/(L+M), and L+M channels, but that when adapting and test stimuli are extended to non-cardinal axes, the existence of multiple chromatically tuned mechanisms is revealed. Most importantly, the effects of chromatic adaptation on this task exhibit little interocular transfer and have rapid decay rates, consistent with chromatic as opposed to contrast adaptation. These findings suggest that the reorganization of chromatic processing may take place earlier in the visual pathway than previously thought.
19

Contribution à l'amélioration de la qualité des états de surfaces des prothèses orthopédiques / Contribution to the surface quality improvement of orthopedic prostheses

Azzam, Noureddine 19 October 2015 (has links)
Une prothèse de genou est généralement, composée de deux parties fixées respectivement sur le fémur et sur le tibia et d’une troisième, dite intercalaire. Durant le processus de fabrication de ces composants des déformations apparaissent au niveau des bruts de fonderie. Les fabricants de prothèses choisissent d’assurer l’épaisseur nominale de la prothèse en enlevant une épaisseur constante sur le brut de fonderie. Cette opération est généralement réalisée manuellement. L’objectif de ces travaux de thèse est de contribuer à l’automatisation de ces opérations en proposant une méthode d’adaptation des trajectoires d’usinage aux variations géométriques de la surface cible. L’objectif de ce travail de recherche est d’adapter une trajectoire d’usinage sur un modèle nominal pour enlever une épaisseur constante sur une surface brute de fonderie mesurée. La méthode proposée commence par une étape d’alignement de la surface mesurée sur la trajectoire nominale en utilisant un algorithme d’ICP. Par la suite, la trajectoire nominale est déformée pour venir enlever l'épaisseur désirée sur la surface brute mesurée. Cette dernière est définie, dans ces travaux, suivant un modèle STL. Naturellement, les discontinuités de ce type de modèle induit une impression des motifs du STL sur la trajectoire adaptée et, donc, sur la pièce usinée. Par la suite, afin de d’atténuer ce problème et d’améliorer la qualité de fabrication, il est proposé de procéder à un lissage de la trajectoire.Afin de valider les développements théoriques de ces travaux, des essais ont été réalisés sur une machine cinq axes pour l’ébauche de composants fémoraux d’une prothèse uni-compartimentale de genou. / Commonly, knee prostheses are composed of two parts fixed respectively on femur and tibia, and a third one called intercalary. During the manufacturing process, of these components distortions appear on roughcast workpiece geometry. Thus, prosthesis manufacturers choose to ensure the nominal thickness of the prosthesis by removing a constant thickness on the roughcast workpiece. This operation is generally carried out realized manually.The aim of this thesis is to contribute to the automation of these manual operations by providing a method to adapt the machining toolpaths at geometrical variations of the target surface. The aim of this research work is to adapt a machining toolpath computed on a nominal model to remove a constant thickness on a roughcast measured surface. The proposed method starts with an alignment step of the measured surface on the nominal toolpath using an ICP algorithm. Subsequently, the nominal toolpath is deformed to remove the desired thickness of the measured rough surface defined in presented case by a STL model. Naturally, discontinuities of this type of model induce the apparition of pattern for the STL on the adapted toolpath and thus on the machined workpiece. Subsequently, to limit this problem and to improve the quality of realized surface, it is proposed a toolpath smoothing method. To validate theoretical developments of this work, tests were carried out on a five-axis machine for roughing of femoral components of a unicompartmental knee prosthesis.
20

Advanced virtual simulation for optimal cutting parameters control in five axis milling / Simulation virtuelle avancée pour contrôler le paramètre de coupe optimale en fraisage cinq-axes

Hendriko, ? 24 June 2014 (has links)
La thèse concerne l’usinage à 5 axes de formes complexes. Le but est d’estimer le plus précisément possible les efforts induits par la coupe pour ajuster la vitesse d’avance et gagner en performance. Pour cela, il est nécessaire d’estimer les engagements radial et axial de la fraise à chaque instant. Ce calcul est rendu particulièrement complexe à cause de la forme de la pièce, de la forme du brut et de la complexité de la géométrie de l’outil. Les méthodes usuelles par Zbuffer sont particulièrement couteuses en temps de calcul. Dans ces travaux nous proposons une méthode de calcul rapide à partir d’une modélisation du contact dans toutes les situations envisageables. Différentes simulations et expérimentations ont permis de valider la précision expérimentalement. / This study presents a simple method to define the Cutter Workpiece Engagement (CWE) during sculptured surface machining in five-axis milling. The instantaneous CWE was defined by determining two engagement points, lowermost engagement (LE)-point and uppermost engagement (UE)-point. LE-point was calculated using a method called grazing method. Meanwhile the UE-point was calculated using a combination of discretization and analytical method. During rough milling and semi-finish milling, the workpiece surface was represented by vertical vector. The method called Toroidal–boundary was employed to obtain the UE-point when it was located on cutting tool at toroidal side. On the other hand, the method called Cylindrical-boundary was used to calculate the UE-point for flat-end cutter and cylindrical side of toroidal cutter. For a free-form workpiece surface, a hybrid method, which is a combination of analytical method and discrete method, was used. All the CWE models proposed in this study were verified and the results proved that the proposed method were accurate. The efficiency of the proposed model in generating CWE was also compared with Z-mapping method. The result confirmed that the proposed model was more efficient in term of computational time. The CWE model was also applied for supporting the method to predict cutting forces. The test results showed that the predicted cutting force has a good agreement with the cutting force generated from the experimental work.

Page generated in 0.0315 seconds