• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 9
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cadherin involvement in axonal branch stability in the Xenopus retinotectal system

Tavakoli, Aydin. January 2008 (has links)
Retinal ganglion cell (RGC) axon arbors within the optic tectum are refined in development through a dynamic process of activity-dependent remodeling. The synaptic adhesion molecule N-cadherin is a candidate for mediating selective stabilization and elaboration of RGC axons due to its localization to perisynaptic sites and its modifiability by neural activity. RGCs of Xenopus tadpoles were co-transfected with plasmids encoding a dominant negative N-cadherin (N-cadDeltaE) and eGFP or eYFP. Using two-photon in vivo time-lapse imaging, we found that axons expressing N-cadDeltaE became less elaborate than controls over three days of daily live imaging. Shorter interval time-lapse imaging of axons expressing synaptophysin-GFP to visualize putative synaptic sites revealed that N-cadDeltaE expressing axons form fewer stable branches than controls and that stabilization of axonal branches at synaptic sites is altered. We conclude that N-cadherin participates in the stabilization of axonal branches in the Xenopus retinotectal system.
22

Physiological and molecular functions of the murine receptor protein tyrosine phosphatase sigma (RPTP[sigma])

Chagnon, Mélanie J., 1977- January 2008 (has links)
The control of cellular tyrosine phosphorylation levels is of great importance in many biological systems. Among the kinases and phosphatases that modulate these levels, the LAR-RPTPs have been suggested to act in several key aspects of neural development, and in a dysfunctional manner in various pathologies from diabetes to cancer. The aim of this thesis is to describe the physiological functions of one of the members of this subfamily of RPTPs, namely RPTPsigma. First, we showed that glucose homeostasis is altered in RPTPsigma null mice. They are hypoglycemic and more sensitive to exogenous insulin and we proposed that the insulin hypersensitivity observed in RPTPsigma-null mice is likely secondary to their neuroendocrine dysplasia and GH/IGF-1 deficiency. In addition to regulating nervous system development, RPTPsigma was previously shown to regulate axonal regeneration after injury. In the absence of RPTPsigma, axonal regeneration in the sciatic, facial and optical nerves was enhanced following nerve crush. However, myelin-associated growth inhibitory proteins and components of the glial scar such as CSPGs (chondroitin sulfate proteoglycans) have long been known to inhibit axonal regeneration in the CNS, making spinal cord injury irreversible. In collaboration with Dr Samuel David, we unveiled that RPTPsigma null mice are able to regenerate their corticospinal tract following spinal cord hemisections as opposed to their WT littermates. We then isolated primary neurons from both sets of animals and found that the absence of RPTPsigma promotes the ability of the neurons to adhere to certain inhibitory substrates. Finally, in order to better understand the physiological role of RPTPsigma, we used a yeast substrate-trapping approach, to screen a murine embryonic library for new substrates. This screen identified the RhoGAP p250GAP as a new substrate, suggesting a downstream role for RPTPsigma in RhoGTPase signaling. We also identified p130Cas and Fyn as new binding partners. All these proteins have clear functional links to neurite extension. The characterization of RPTPsigma and its signaling partners is essential for understanding its role in neurological development and may one day translate into treatments of neural diseases and injuries.
23

Physiological and molecular functions of the murine receptor protein tyrosine phosphatase sigma (RPTP[sigma])

Chagnon, Mélanie J., 1977- January 2008 (has links)
No description available.
24

Cadherin involvement in axonal branch stability in the Xenopus retinotectal system

Tavakoli, Aydin. January 2008 (has links)
No description available.
25

Regeneration and plasticity of descending propriospinal neurons after transplantation of Schwann cells overexpressing glial cell line-derived neurotrophic factor following thoracic spinal cord injury in adult rats

Deng, Lingxiao 18 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / After spinal cord injury (SCI), poor axonal regeneration of the central nervous system, which mainly attributed to glial scar and low intrinsic regenerating capacity of severely injured neurons, causes limited functional recovery. Combinatory strategy has been applied to target multiple mechanisms. Schwann cells (SCs) have been explored as promising donors for transplantation to promote axonal regeneration. Among the central neurons, descending propriospinal neurons (DPSN) displayed the impressive regeneration response to SCs graft. Glial cell line-derived neurotrophic factor (GDNF), which receptor is widely expressed in nervous system, possesses the ability to promote neuronal survival, axonal regeneration/sprouting, remyelination, synaptic formation and modulate the glial response. We constructed a novel axonal permissive pathway in rat model of thoracic complete transection injury by grafting SCs over-expressing GDNF (SCs-GDNF) both inside and caudal to the lesion gap. Behavior evaluation and histological analyses have been applied to this study. Our results indicated that tremendous DPSN axons as well as brain stem axons regenerated across the lesion gap back to the caudal spinal cord. In addition to direct promotion on axonal regeneration, GDNF also significantly improved the astroglial environment around the lesion. These regenerations caused motor functional recovery. The dendritic plasticity of axotomized DPSN also contributed to the functional recovery. We applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of DPSNs and its response to axotomy injury and GDNF treatment. We also investigated the neurotransmitters phenotype of FluoroGold (FG) labeled DPSNs. Our results indicated that over 90 percent of FG-labeled DPSNs were glutamatergic neurons. DPSNs in sham animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution, with dorsal-ventral retraction and lateral-medial extension of dendrites. Treatment with GDNF significantly increased the terminal dendritic length of DPSNs. The density of spine-like structures was increased after injury and treatment with GDNF enhanced this effect.
26

Konditionale Inaktivierung von Pten in einem neuen Mausmodell für tomaculöse Neuropathien / Conditional inactivation of Pten in a new mouse model of tomaculous neuropathies

Oltrogge, Jan Hendrik 01 February 2017 (has links)
In der Entwicklung des peripheren Nervensystems formen Schwannzellen eine Myelinscheide um Axone mit einem Durchmesser von mehr als 1 μm durch die Bildung multipler kompakter Membranschichten. Voraussetzung einer optimalen Nervenleitgeschwindigkeit ist dabei ein physiologisches Verhältnis der Dicke der Myelinscheide zu dem jeweiligen Axondurchmesser. Eine zentrale Rolle spielt dabei der axonale EGF-like growth factor NRG1 Typ III, der ErbB2/3- Rezeptoren der Schwannzelle bindet. Der PI3K-AKT-Signalweg ist ein bekannter intrazellulärer Effektor des ErbB2/3-Rezeptors und wurde bereits mit dem Prozess der Myelinisierung in Verbindung gebracht. Um die spezifische Funktion des PI3K-AKT-Signalwegs in Schwannzellen zu erforschen, generierten wir mit Hilfe des Cre/LoxP-Systems Mausmutanten, die eine zellspezifische Inaktivierung des Gens Phosphatase and Tensin Homolog (Pten) in myelinisierenden Gliazellen aufweisen (Pten-Mutanten). Der Verlust der Lipidphosphatase PTEN führte zu einer Anreicherung ihres Substrates, des second messenger Phosphatidyl-(3,4,5)-Trisphosphat (PIP3), und damit zu einer gesteigerten Aktivität des PI3K-AKT-Signalwegs in den Schwannzellen der Pten-Mutanten. Wir beobachteten in den Pten-Mutanten eine ektopische Myelinisierung von unmyelinisierten C- Faser-Axonen sowie eine Hypermyelinisierung von Axonen bis 2 μm Durchmesser. Bei Axonen über 2 μm Durchmesser kam es zu Myelinausfaltungen und fokalen Hypermyelinisierungen (Tomacula) anliegend an Regionen des unkompakten Myelins (Paranodien und Schmidt- Lantermann-Inzisuren). Weiterhin bildeten die mutanten Remak-Schwannzellen unkompakte Membranwicklungen um nicht-myelinisierte C-Faser-Axone und um Kollagenfaserbündel aus („Remak-Myelin“). Sowohl in den Regionen unkompakten Myelins als auch in Remak- Schwannzellen konnte eine erhöhte Aktivität des PI3K-AKT-Signalwegs nachgewiesen werden. Vermutlich setzt die Anreicherung von PIP3 mit Überaktivierung des PI3K-AKT-Signalwegs in den mutanten Gliazellen einen zellautonomen Prozess der Umwicklung von Axonen in Gang. Die zusätzliche Bildung von „Remak-Myelin“ um Kollagenfasern, die keine Membranoberfläche besitzen, weist darauf hin, dass dieser Prozess nicht von einer bidirektionalen axo-glialen Kommunikation abzuhängen scheint. Die beobachteten Tomacula und Myelinausfaltungen zeigten Ähnlichkeiten mit Mausmodellen für hereditäre Neuropathien des Menschen, wie HNPP und CMT4B. Wir vermuten, dass PTEN im unkompakten Myelin unkontrolliertes Membranwachstum verhindert und dass eine gestörte Balance von Phosphoinositiden einen Pathomechanismus von tomaculösen Neuropathien darstellt. Somit identifizieren wir den PI3K-AKT-Signalweg als ein mögliches Ziel zukünftiger Therapiekonzepte für hereditäre Neuropathien des Menschen.

Page generated in 0.0747 seconds