• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthetic Studies of Azulenyl and Pseudoazulenyl Nitrones

Kolhe, Amolkumar 11 March 2009 (has links)
Free radicals have been implicated in various pathological conditions such as, stroke, aging and ischemic heart disease (IHD), as well as neurodegenerative diseases like Alzheimer’s, Parkinson’s, and Huntington’s disease. The role of antioxidants in protection from the harmful effects of free radicals has long been recognized. Trapping extremely reactive free radicals and eliminating them from circulation has been shown to be effective in animal models. Nitrone-based free radical traps have been extensively explored in biological systems. Examples include nitrones such as PBN, NXY-059, MDL-101,002, DMPO and EMPO. However, these nitrones have extremely high oxidation potentials as compared to natural antioxidants such as Vitamin E (á-tocopherol), and glutathione. Becker et al. (1995) synthesized novel azulenyl nitrones, which were shown to have oxidation potentials much lower than that of any of the previously reported nitrone based spin traps. Another azulenyl nitrone derivative, stilbazulenyl nitrone (STAZN), was shown to have an even lower oxidation potential within the range of natural antioxidants. STAZN, a second generation free radical trap, was found to be markedly superior than the two most studied nitrones, PBN and NXY-059, in animal models of cerebral ischemia and in an in vitro assay of lipid peroxidation. In this study, a third generation azulenyl nitrone was synthesized with an electron donating group on the previously synthesized STAZN derivative with the aim to lower the oxidation potential even more. Pseudoazulenes, because of the presence of an annular heteroatom, have been reported to possess even lower oxidation potential than that of the azulenyl counterpart. Therefore, pseudoazulenyl nitrones were synthesized for the first time by extracting and elaborating valtrate from the roots of Centranthus ruber (Red valerian or Jupiter’s beard). Several pseudoazulenyl nitrones were synthesized by using a facile experimental protocol. The physical and biological properties of these pseudoazulenyl nitrones can be easily modified by simply changing the substituent on the heteroatom. Cyclic voltammetry experiments have shown that these pseudoazulenyl nitrones do indeed have low oxidation potentials. The oxidation potential of these nitrones was lowered even more by preparing derivatives bearing an electron donating group at the 3-position of the five membered ring of the pseudoazulenyl nitrone.
2

Design and synthesis of novel Azasteroids and Pseudoazulenyl nitrones

Birudukota, Nagaraju 07 December 2016 (has links)
Steroids are one of the essential classes of bioactive compounds and are involved in many biological functions which include their role as signaling compounds, the alteration of membrane fluidity and the regulation of a variety of metabolic processes. In order to identify novel compounds with beneficial pharmacological action, the synthesis of modified steroids is gaining much attention in recent years. Among those analogs, azasteroids are one of the most important classes which display a variety of biological activities, often free from undesirable side effects. The challenges in the synthesis of steroids, particularly azasteroids, and the potential of azasteroids as novel drugs has prompted numerous investigations in this field. The synthetic methods leading to steroidal derivatives (azasteroids) with one or more nitrogen atoms are very limited. Generally, oxidative cleavage of the steroidal rings is needed to introduce nitrogen atom(s) in order to synthesize azasteroids. In the first part of this dissertation, explorations into the synthetic methods needed for making a new steroidal A-ring or seco A-ring on a tricyclic benz[e]indenedione (a dimer compound obtained in connection with continued work on the study of anhydrobases of the isoxazole series) were pursued. In this process, a series of three tricyclic hydrazone compounds have been designed and synthesized to mimic the tetracyclic rigid core structure of azasteroids. We are eager to ascertain if these compounds possesses any interesting biological properties. In continued research on the synthesis of azulenyl and pseudoazulenyl nitrones, (to target ROS generation at the site of mitochondria), the second part of this research was aimed at the synthesis of cationic pseudoazulenyl nitrones with mitochondriotropic properties. Several pseudoazulenyl nitrone derivatives were synthesized using the natural compound valtrate, obtained from the roots of Centranthus ruber. Unfortunately, the attempts made to convert these compounds into the corresponding cationic pseudoazulenyl nitrones failed. However, an interesting pseudoazulenyl dinitrone molecule bearing an imidazole group was prepared. Also, a pseudoazulenyl mono nitrone compound with an electron donating group was synthesized by leaving a highly reactive aldehyde functionality intact for further use in synthetic study.

Page generated in 0.0333 seconds