1 |
Design of Efficient MAC Protocols for IEEE 802.15.4-based Wireless Sensor NetworksKhanafer, Mounib 01 May 2012 (has links)
Wireless Sensor Networks (WSNs) have enticed a strong attention in the research community due to the broad range of applications and services they support. WSNs are composed of intelligent sensor nodes that have the capabilities to monitor different types of environmental phenomena or critical activities. Sensor nodes operate under stringent requirements of scarce power resources, limited storage capacities, limited processing capabilities, and hostile environmental surroundings. However, conserving sensor nodes’ power resources is the top priority requirement in the design of a WSN as it has a direct impact on its lifetime. The IEEE 802.15.4 standard defines a set of specifications for both the PHY layer and the MAC sub-layer that abide by the distinguished requirements of WSNs. The standard’s MAC protocol employs an intelligent backoff algorithm, called the Binary Exponent Backoff (BEB), that minimizes the drainage of power in these networks. In this thesis we present an in-depth study of the IEEE 802.15.4 MAC protocol to highlight both its strong and weak aspects. We show that we have enticing opportunities to improve the performance of this protocol in the context of WSNs. We propose three new backoff algorithms, namely, the Standby-BEB (SB-BEB), the Adaptive Backoff Algorithm (ABA), and the Priority-Based BEB (PB-BEB), to replace the standard BEB. The main contribution of the thesis is that it develops a new design concept that drives the design of efficient backoff algorithms for the IEEE 802.15.4-based WSNs. The concept dictates that controlling the algorithms parameters probabilistically has a direct impact on enhancing the backoff algorithm’s performance. We provide detailed discrete-time Markov-based models (for AB-BEB and ABA) and extensive simulation studies (for the three algorithms) to prove the superiority of our new algorithms over the standard BEB.
|
2 |
Design of Efficient MAC Protocols for IEEE 802.15.4-based Wireless Sensor NetworksKhanafer, Mounib 01 May 2012 (has links)
Wireless Sensor Networks (WSNs) have enticed a strong attention in the research community due to the broad range of applications and services they support. WSNs are composed of intelligent sensor nodes that have the capabilities to monitor different types of environmental phenomena or critical activities. Sensor nodes operate under stringent requirements of scarce power resources, limited storage capacities, limited processing capabilities, and hostile environmental surroundings. However, conserving sensor nodes’ power resources is the top priority requirement in the design of a WSN as it has a direct impact on its lifetime. The IEEE 802.15.4 standard defines a set of specifications for both the PHY layer and the MAC sub-layer that abide by the distinguished requirements of WSNs. The standard’s MAC protocol employs an intelligent backoff algorithm, called the Binary Exponent Backoff (BEB), that minimizes the drainage of power in these networks. In this thesis we present an in-depth study of the IEEE 802.15.4 MAC protocol to highlight both its strong and weak aspects. We show that we have enticing opportunities to improve the performance of this protocol in the context of WSNs. We propose three new backoff algorithms, namely, the Standby-BEB (SB-BEB), the Adaptive Backoff Algorithm (ABA), and the Priority-Based BEB (PB-BEB), to replace the standard BEB. The main contribution of the thesis is that it develops a new design concept that drives the design of efficient backoff algorithms for the IEEE 802.15.4-based WSNs. The concept dictates that controlling the algorithms parameters probabilistically has a direct impact on enhancing the backoff algorithm’s performance. We provide detailed discrete-time Markov-based models (for AB-BEB and ABA) and extensive simulation studies (for the three algorithms) to prove the superiority of our new algorithms over the standard BEB.
|
3 |
Design of Efficient MAC Protocols for IEEE 802.15.4-based Wireless Sensor NetworksKhanafer, Mounib January 2012 (has links)
Wireless Sensor Networks (WSNs) have enticed a strong attention in the research community due to the broad range of applications and services they support. WSNs are composed of intelligent sensor nodes that have the capabilities to monitor different types of environmental phenomena or critical activities. Sensor nodes operate under stringent requirements of scarce power resources, limited storage capacities, limited processing capabilities, and hostile environmental surroundings. However, conserving sensor nodes’ power resources is the top priority requirement in the design of a WSN as it has a direct impact on its lifetime. The IEEE 802.15.4 standard defines a set of specifications for both the PHY layer and the MAC sub-layer that abide by the distinguished requirements of WSNs. The standard’s MAC protocol employs an intelligent backoff algorithm, called the Binary Exponent Backoff (BEB), that minimizes the drainage of power in these networks. In this thesis we present an in-depth study of the IEEE 802.15.4 MAC protocol to highlight both its strong and weak aspects. We show that we have enticing opportunities to improve the performance of this protocol in the context of WSNs. We propose three new backoff algorithms, namely, the Standby-BEB (SB-BEB), the Adaptive Backoff Algorithm (ABA), and the Priority-Based BEB (PB-BEB), to replace the standard BEB. The main contribution of the thesis is that it develops a new design concept that drives the design of efficient backoff algorithms for the IEEE 802.15.4-based WSNs. The concept dictates that controlling the algorithms parameters probabilistically has a direct impact on enhancing the backoff algorithm’s performance. We provide detailed discrete-time Markov-based models (for AB-BEB and ABA) and extensive simulation studies (for the three algorithms) to prove the superiority of our new algorithms over the standard BEB.
|
Page generated in 0.067 seconds