Spelling suggestions: "subject:"backscatter"" "subject:"backscattering""
1 |
Low Temperature Austenite Decomposition in Carbon SteelsStormvinter, Albin January 2012 (has links)
Martensitic steels have become very important engineering materials in modern society. Crucial parts of everyday products are made of martensitic steels, from surgical needles and razor blades to car components and large-scale excavators. Martensite, which results from a rapid diffusionless phase transformation, has a complex nature that is challenging to characterize and to classify. Moreover the possibilities for modeling of this phase transformation have been limited, since its thermodynamics and kinetics are only reasonably well understood. However, the recent development of characterization capabilities and computational techniques, such as CALPHAD, and its applicability to ferrous martensite has not been fully explored yet. In the present work, a thermodynamic method for predicting the martensite start temperature (Ms) of commercial steels is developed. It is based mainly on information on Ms from binary Fe-X systems obtained from experiments using very rapid cooling, and Ms values for lath and plate martensite are treated separately. Comparison with the experimental Ms of several sets of commercial steels indicates that the predictive ability is comparable to models based on experimental information of Ms from commercial steels. A major part of the present work is dedicated to the effect of carbon content on the morphological transition from lath- to plate martensite in steels. A range of metallographic techniques were employed: (1) Optical microscopy to study the apparent morphology; (2) Transmission electron microscopy to study high-carbon plate martensite; (3) Electron backscattered diffraction to study the variant pairing tendency of martensite. The results indicate that a good understanding of the martensitic microstructure can be achieved by combining qualitative metallography with quantitative analysis, such as variant pairing analysis. This type of characterization methodology could easily be extended to any alloying system and may thus facilitate martensite characterization in general. Finally, a minor part addresses inverse bainite, which may form in high-carbon alloys. Its coupling to regular bainite is discussed on the basis of symmetry in the Fe-C phase diagram. / <p>QC 20120824</p> / Hero-m
|
2 |
Detection of Signal Parameters and Backscattering Polarimetric Imaging Signatures using Molecular Optical Contrast Agents and Preclinical Liquid PhantomsAdya, Vandana January 2008 (has links)
No description available.
|
3 |
Design and Characterization of a Nanoscale Carbide-Free Bainite AlloySaragosa, James 11 1900 (has links)
High carbon bainitic steel plates could surpass quench and tempered martensitic counterparts for fabrication of ammunition- and blast-resistant armours. Mechanical properties, microstructure and reaction kinetics of a commercially available carbide-free nanoscale bainite alloy were characterized. Based on the initial characterization and a comprehensive review of the literature a new alloy with lower carbon, higher silicon and cobalt additions was designed and processed into hot-rolled plates (10x10mm and 300x300mm) using CanmetMATERIALS pilot-scale facilities. The heat treated plates achieved strength above 2 GPa with elongation of 14%. Thorough analysis with electron backscattered diffraction revealed that the microstructure consisted of bainitic ferrite laths, islands of retained austenite, areas of mixed martensite-austenite (MA). Transmission electron microscopy confirmed the fine scale of bainitic ferrite and the presence of thin films of retained austenite encompassing bainite laths.
Dilatometric study of the new alloy revealed that forming bainite at higher transformation temperatures, 275°C versus 250°C and 225°C, led to faster overall reaction kinetics and higher final fractions of bainite within 18 hours of isothermal holding. Although it is expected that the fraction of bainite increases at lower temperatures, substantial prolonged holding time is required for completion of the reaction. Microstructural features and particularly bainite lath thickness depended on bainite formation temperature. Ausforming, deformation of austenite at 600°C for 25-45% strain prior to decomposition to bainite, however led to a decrease in reaction rate and final fraction of bainite.
Tensile testing of austempered specimens showed that higher transformation temperature yielded a stronger microstructure, which was attributed to the formation of thinner bainitic ferrite laths. Higher transformation temperatures led to an increase in ductility. Tensile testing of the ausformed specimens showed a reduction in both strength and ductility. A negative correlation was seen between the amount of MA areas in the microstructure and total elongation. / Thesis / Master of Science in Materials Science and Engineering (MSMSE) / This project has adopted the science of bainite transformation to develop a suitable alloy and processing method for the fabrication of very strong armour plates at a lower cost compared to commercially available grades. The pilot-scale casting and processing facility at CanmetMATERIALS centre was used to produce full sized, 1ft (304.8mm) by 1ft (304.5mm), prototype armour plates. The plates were subsequently characterized using a variety of techniques to determine interplay between processing parameters, microstructure and the ensuing final performance. The optimized alloy, tailored processing parameters, and characterization information constitute the contribution of the present work to the current state of research.
|
4 |
Coded aperture imaging application in one-sided imaging of visually obscured objectsScott, William 17 May 2011 (has links)
The physical properties of visible light and its interaction with matter create
obstructions the human eye cannot explore. High energy radiation has been
used as an alternative to visible light to penetrate these concealed regions
and reveal their contents. However, traditional imaging techniques require a
two-sided apparatus with a radiation source and a detector on opposite sides
of the concealed object.
One-sided imaging of concealed objects is made possible by a technique
called backscatter imaging, utilizing high energy radiation. However, the
signal produced by backscatter imaging is inherently weak, which makes in-
terpretation di cult. One of the most promising techniques for recovering
the weak signal is the coding and decoding provided by Coded Aperture
Imaging (CAI).
The purpose of this study was to create and test a coded aperture imaging
system using backscattered x-rays. This would enable one-sided imaging of
concealed objects and demonstrate whether a portable imaging system was
feasible. The results obtained from conducting a computer simulation, visi-
ble light experiments, and x-ray experiments proved that the process works,
however, the x-ray
ux levels required were too high for a portable system,
based upon the current equipment available at UOIT. / UOIT
|
5 |
Origin of quartz and amphibole precipitates in omphacite in the ultrahigh-pressure metamorphosed eclogite from Xitieshan, North QaidamTsau, Yi-Chi 08 September 2011 (has links)
Oriented needle-shaped or rod-shaped quartz precipitates occur in clinopyroxenes have been commonly observed in eclogites or garnet peridotites from the high pressure or ultra-high pressure (HP/UHP) metamorphic belts, and their occurrence has been used as an indicator of UHP metamorphism. However, the origin of those quartz precipitates and their crystallographic orientation relationships with clinopyroxene hosts are still not clear. In order to understand the formation mechanisms and environments of the quartz precipitates, the present study has used electron backscattered diffraction (EBSD) analysis, petrographic and scanning electron microscopy, and electron microprobe analysis to study textural features, mineral assemblages, mineral compositions, and crystallographic orientation relationships of mineral precipitates in the omphacite from Xitieshan, North Qaidam UHP metamorphic belt. The results show that the oriented rod-like precipitates in the omphacite hosts are mainly composed of quartz + edenite, and the rods are 5~20
|
6 |
Microstructural and Mechanical Property Characterization of Laser Additive Manufactured (LAM) RheniumJanuary 2012 (has links)
abstract: This report will review the mechanical and microstructural properties of the refractory element rhenium (Re) deposited using Laser Additive Manufacturing (LAM). With useable structural strength over 2200 °C, existing applications up to 2760 °C, very high strength, ductility and chemical resistance, interest in Re is understandable. This study includes data about tensile properties including tensile data up to 1925 °C, fracture modes, fatigue and microstructure including deformation systems and potential applications of that information. The bulk mechanical test data will be correlated with nanoindentation and crystallographic examination. LAM properties are compared to the existing properties found in the literature for other manufacturing processes. The literature indicates that Re has three significant slip systems but also twins as part of its deformation mechanisms. While it follows the hcp metal characteristics for deformation, it has interesting and valuable extremes such as high work hardening, potentially high strength, excellent wear resistance and superior elevated temperature strength. These characteristics are discussed in detail. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2012
|
7 |
Development of Highly Sensitive Electrochemiluminescence Platforms and Application in Disease Biomarker ImmunosensingDouman, Samantha Fiona January 2018 (has links)
Philosophiae Doctor - PhD (Chemistry) / Electrochemiluminescence (ECL) is a light-emitting process generated by
electrochemical redox reactions and has been widely used as an analytical tool,
especially in the field of biosensing, that is, immunoassays and DNA-probe
assays. Thus, the scope of this work was to develop a simple, sensitive ECL
immunosensor for cardiac injury and to study and present insights into newly
fabricated platforms for bioanalytical applications by using ECL as detection
mechanism. / 2021-08-31
|
8 |
5D Grain Boundary Characterization from EBSD MicroscopyAmalaraj, Akash Savio 01 December 2018 (has links)
Knowledge of the full 5-degree Grain Boundary Character Distribution (GBCD) is vital to understanding properties, such as gas diffusivity, that are dominated by grain boundary character. Surface characterization techniques, such as Electron Backscattered diffraction (EBSD), can provide only 4 of the 5 GB characteristics (the rotation between the neighboring grains, and the trace of the GB on the surface). The inclination of the GB in the direction normal to the surface is not known. A previous study indicated that the GB inclination could be recovered by correlating the Electron Backscattered patterns (EBSPs) of sample points near the GB with EBSPs taken from the centers of the neighboring grains. The resultant transition curve could be compared with theoretical curves obtained from MonteCarlo simulations of electron yield from the two grains. However, a practical method based upon this study was never implemented. Here, a few microscopy and image filters have been applied to the EBSPs to improve the image quality. Also, several experiments have been conducted to verify and validate the interaction volume of the materials used to produce theoretical transition curves, in order to receive more accurate results. In this work, it is hypothesized that transition curves obtained from considering individual band intensities from the EBSPs will give more informative transition curves. The filtered EBSPs from the band intensities coupled with the accurate interaction volume values, should give us more reliable and repeatable transition curves, and that a more detailed comparison of the experimental and simulated transition curves will give higher fidelity results, in terms of GB inclination determination.
|
9 |
Secondary Electron Production and Transport Mechanisms By Measurement of Angle-Energy Resolved Cross Sections of Secondary and Backscattered Electron Emission from GoldKite, Jason T. 01 May 2006 (has links)
This work provides information about interactions that produce emitted electrons from polycrystalline Au. Emission energy- angle- dependent electron spectra from a polycrystalline Au surface have been measured at several incident electron beam energies. The range of incident energies (~100 eV to 2500 eV) extends from below the first crossover energy, through Emaxo, to above the second crossover energy. The conventional distinction between secondary electrons (SE) (50 eV) is found to be crude for the investigation of electron yields using these energy- angle- resolved measurements. A more realistic boundary occurs at the local minima of the emission spectra; this feature is studied as a function of incident energy and emission angle. In addition, deviations observed in the angular resolved emission spectra from isotropic behavior suggests that residual signatures exist in the emission spectra resulting from the anisotropic SE production mechanisms. Based on the disparity between our observations and recent modeling of the emission spectra, the most recent theory and simulation studies may overestimate the occurrence of randomizing collisions of scattered secondary electrons in the model of the transport mechanism. Finally, description of extensive modification to instrumental and analysis methods are described, and their effectiveness is evaluated.
|
10 |
Additive Manufacturing of NiTi Shape Memory Alloys with Biomedical ApplicationsSafdel, Ali January 2023 (has links)
This study focuses on the laser powder bed fusion processing of NiTi alloys and the feasibility of fabricating very thin stent structures for biomedical applications. A comprehensive correlation between the process and the material’s-structure and properties is established to facilitate the fabrication of NiTi alloys with tailored properties. In the first step, the impact of LPBF processing parameters and post-treatments on evolving the microstructure, texture, superelasticity, and asymmetry is examined. Subsequently, the feasibility of manufacturing very thin mesh structured stents is scrutinized followed by in-depth investigations into differently designed stents considering properties such as surface characteristics, mechanical properties, superelasticity, and recoverability. The obtained results and the represented discussions offer imperative insights, helping to better understand the complexity of the LPBF process and the present challenging aspects. Moreover, detailed contributions are made with the goal of paving the road ahead for the production of patient-specific NiTi stents with enhanced properties. / Thesis / Doctor of Philosophy (PhD)
|
Page generated in 0.0744 seconds