• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hot Working Characteristics of AISI 321 in Comparison to AISI 304 Austenitic Stainless Steels

Chimkonda Nkhoma, R.K. (Richard Kasanalowe) January 2014 (has links)
Although the austenitic stainless steels 304 and 321 are often treated nominally as equivalents in their hot rolling characteristics, the question remains whether any subtle differences between the two allow further optimisation of their respective hot rolling schedules. The hot workability of these two types of austenitic stainless steels was compared through single-hit Gleeble simulated thermomechanical processing between 800℃ and 􀀄􀀅00℃ while the strain rate was varied between 0.00􀀄s􀀈􀀉 and 5s􀀈􀀉. It was found that the constants for the hyperbolic sinh equation for hot working of AISI 321 steel are Q = 465 kJ/mol, 􀀖􀀗 = 􀀘.􀀙6 􀀚 􀀄0􀀉􀀛 􀀜􀀝􀀞􀀈􀀉􀀟􀀈􀀉, 􀀠 = 0.00􀀘 􀀜􀀝􀀞􀀈􀀉 and 􀀡 = 6.􀀄 while for 304 steel the constants are Q = 446 kJ/mol, 􀀖􀀗 = 􀀅.􀀄4 􀀚 􀀄0􀀉􀀛 􀀜􀀝􀀞􀀈􀀉􀀟􀀈􀀉, 􀀠 = 0.008 􀀜􀀝􀀞􀀈􀀉and 􀀡 = 6.􀀄. It is shown that the occurrence of dynamic recrystallisation starts when the Zener-Hollomon parameter 􀀢 􀀣 6.4 􀀚 􀀄0􀀉􀀛s􀀈􀀉 for both steels but that the differences in the values of Q and A3 (the structure factor) between the two steels does lead to consistently lower steady state stresses for the steel 321 than is found in the steel 304 at the same Z values. This may, therefore, offer some scope for further optimisation of the hot rolling schedules and in particular in the mill loads of these two respective steels. A modelled constitutive equation derived from hot working tests to predict hot rolling mill loads is proposed and validated against industrial hot rolling data for AISI 321 stainless steel. Good correlation is found between the predicted Mean Flow Stress, the Zener-Hollomon Z parameter and actual industrial mill load values from mill logs if allowances are made for differences in Von Mises plane strain conversion, friction and front or back end tension. The multipass hot working behaviour of this steel was simulated through Gleeble thermomechanical compression testing with the deformation temperature varying between 1200℃ down to 800℃ and the strain rate between 0.001s-1 and 5s-1. At strain rates greater than 0.05s-1, dynamic recovery as a softening mechanism was dominant, increasing the dynamic recrystallisation to dynamic recovery transition temperature DRTT to higher temperatures. This implies that through extrapolation to typical industrial strain rates of about 60s-1,most likely no dynamic recrystallisation in plant hot rolling occurs in this steel but only dynamic recovery. Grain refinement by DRX is, therefore, unlikely in this steel under plant hot rolling conditions. Finally, mill load modelling using the hot working constitutive constants of the near-equivalent 304 instead of those specifically determined for 321, introduces measurable differences in the predicted mill loads. The use of alloy-specific hot working constants even for near-equivalent steels is, therefore, recommended. / Thesis (PhD)--University of Pretoria, 2014. / lk2014 / Materials Science and Metallurgical Engineering / PhD / unrestricted
2

Estudo do comportamento mecânico monotônico, cíclico e da evolução microestrutural em alta temperatura do aço ASTM A297 HP modificado com nióbio / Study of the mechanical behavior monotonic, cyclic and microstructural evolution in high temperature steel ASTM A297-HP modified with niobium

Araujo, Marcos Vinícius Pereira de 04 December 2015 (has links)
Componentes estruturais de fornos de pirólise utilizados para craqueamento de petróleo são fabricados a partir de aços inox fundidos utilizados para aplicações em alta temperatura, sendo necessária a adição de elementos químicos para a formação de fases que melhoram as propriedades mecânicas do material neste tipo de ambiente. O presente trabalho estuda os efeitos da adição de nióbio nas propriedades mecânicas e no comportamento elastoplástico/viscoelástico aos 927°C do aço inox fundido ASTM A297 grau HP na condição bruto de fusão, condição esta similar a de trabalho do forno.Para analisar as variação de propriedades mecânicas do material, foram realizados ensaios de tração em distintas temperaturas, calorimetria exploratória de varredura (DSC), ensaios de relaxação, fadiga de ciclos contínuos sob o formato de onda triangular e fadiga com formato de onda trapezoidal do tipo \"dwell\" com tempos de permanência de 120 e 300 segundos conforme especifica a norma E2714-13 e ensaios de torção a quente. O intuito da realização deste trabalho reside no fato de que equipamentos como os fornos de pirólise não mantém os parâmetros operacionais constantes, podendo variar temperatura, cargas de trabalho e também gerar cargas cíclicas com tempos de permanência em ciclos de partida, operação e parada de equipamento, sendo importante o conhecimento da resposta fenomenológica que o material oferece sob estes tipos de solicitações. Os resultados dos ensaios mecânicos e estudos da evolução microestrutural, bem como de suas posteriores análises forneceram dados, não somente sob a forma de \"data sheet\'s\" para aplicação dos valores obtidos em projetos, mas concomitantemente após a comparação de propriedade e microestrutura, aprofundar na fenomenologia do comportamento mecânico de tensão versus deformação monotônico e cíclicos, mecanismos de deformação em alta temperatura, recuperação dinâmica, do tipo de microestrutura resultante após a realização dos ensaios e também dos mecanismos de fratura associados aos tipos de solicitações mecânicas impostas ao material, obtidos por meio dos ensaios mecânicos mencionados anteriormente. / Structural components pyrolysis furnaces used for oil cracking are made from cast stainless steel used for applications at high temperature, requiring the addition of chemicals to the formation of phases which improves the mechanical properties of the material in such an environment. This work studies the effects of adding niobium in the mechanical properties and elastoplastic/viscoelastic behavior to 927°C cast stainless steel ASTM A297 grade HP in as cast condition, at condition similar to the work of furnace. For study of the variation of mechanical properties, tensile tests were conducted at different temperatures, differential scanning calorimetry (DSC), relaxation tests, fatigue continuous cycles under triangular waveform and fatigue with trapezoid type waveform format \"dwell\" with residence times of 120 and 300 seconds as reflected by the E2714-13 standard and hot torsion tests. The purpose of this work lies in the fact that equipment such as pyrolysis furnaces do not maintain the constant operating parameters, varying temperature, workloads and also generate cyclic loading with residence times in starting cycles, operation and equipment stop It is important the knowledge of the phenomenological response that the material offers under these types of requests. The results of mechanical tests and micorestrutural evolution studies, as well as its further analysis provided data, not only in the form of \"data sheet\'s\" for application of the values obtained in projects, but co-after comparison of property and microstructure, deepen the phenomenology of the mechanical behavior of tension versus monotonic and cyclic deformation, deformation mechanisms at high temperature, dynamic recovery, the type of resulting microstructure after the tests and also the fracture mechanisms related to types of mechanical stresses imposed on the material, obtained by through the mechanical tests mentioned above.
3

The influence of Zn on the mechanical property of Al-Zn alloy

Yan, Hong-Kun 23 May 2012 (has links)
In this study, mechanical properties of Al-Zn alloys were conducted, with various parameters including Zn contents, grain size, and tensile strain rate. Experimental samples were all manufactured with friction stir processing method. Samples of Al-Zn alloys with the grain size of 1.5£gm, 1£gm, or 0.5£gm and five Zn concentration were pulled in tension at strain rate of 10-3s-1,10-4s-1 and 10-5s-1 . The data set were then used to draw engineering and true tensile stress vs. strain curves , flowing stress vs. Zn contents curves, Hall-Petch equation curves, m vs. Zn contents curves and m vs. grain size curves. Quantitative analysis were conducted to discover that solid solute softening and inverse Hall-Petch relation were present in Al-Zn alloys, which were more prominent at slower tensile strain rate when grain size was less than 1£gm and the Zn contents was higher than 10wt%. Quantitative analysis of strain rate sensitivity (m) showed the trends of increasing value of m with higher Zn contents and smaller grain sizes when solid solute softening and inverse Hall-Petch relation were present. The high grain-boundary diffusion coefficient of Zn which accelerates the efficiency of dynamic recovery are considered the main reason. The effect gets more prominent with increasing Zn contents , smaller grain size , and slower tensile strain rate. For Zn concentration higher than 10wt%, dynamic recovery may drive inverse Hall-Petch relation to appear when grain size is about 1£gm large.
4

Estudo do comportamento mecânico monotônico, cíclico e da evolução microestrutural em alta temperatura do aço ASTM A297 HP modificado com nióbio / Study of the mechanical behavior monotonic, cyclic and microstructural evolution in high temperature steel ASTM A297-HP modified with niobium

Marcos Vinícius Pereira de Araujo 04 December 2015 (has links)
Componentes estruturais de fornos de pirólise utilizados para craqueamento de petróleo são fabricados a partir de aços inox fundidos utilizados para aplicações em alta temperatura, sendo necessária a adição de elementos químicos para a formação de fases que melhoram as propriedades mecânicas do material neste tipo de ambiente. O presente trabalho estuda os efeitos da adição de nióbio nas propriedades mecânicas e no comportamento elastoplástico/viscoelástico aos 927°C do aço inox fundido ASTM A297 grau HP na condição bruto de fusão, condição esta similar a de trabalho do forno.Para analisar as variação de propriedades mecânicas do material, foram realizados ensaios de tração em distintas temperaturas, calorimetria exploratória de varredura (DSC), ensaios de relaxação, fadiga de ciclos contínuos sob o formato de onda triangular e fadiga com formato de onda trapezoidal do tipo \"dwell\" com tempos de permanência de 120 e 300 segundos conforme especifica a norma E2714-13 e ensaios de torção a quente. O intuito da realização deste trabalho reside no fato de que equipamentos como os fornos de pirólise não mantém os parâmetros operacionais constantes, podendo variar temperatura, cargas de trabalho e também gerar cargas cíclicas com tempos de permanência em ciclos de partida, operação e parada de equipamento, sendo importante o conhecimento da resposta fenomenológica que o material oferece sob estes tipos de solicitações. Os resultados dos ensaios mecânicos e estudos da evolução microestrutural, bem como de suas posteriores análises forneceram dados, não somente sob a forma de \"data sheet\'s\" para aplicação dos valores obtidos em projetos, mas concomitantemente após a comparação de propriedade e microestrutura, aprofundar na fenomenologia do comportamento mecânico de tensão versus deformação monotônico e cíclicos, mecanismos de deformação em alta temperatura, recuperação dinâmica, do tipo de microestrutura resultante após a realização dos ensaios e também dos mecanismos de fratura associados aos tipos de solicitações mecânicas impostas ao material, obtidos por meio dos ensaios mecânicos mencionados anteriormente. / Structural components pyrolysis furnaces used for oil cracking are made from cast stainless steel used for applications at high temperature, requiring the addition of chemicals to the formation of phases which improves the mechanical properties of the material in such an environment. This work studies the effects of adding niobium in the mechanical properties and elastoplastic/viscoelastic behavior to 927°C cast stainless steel ASTM A297 grade HP in as cast condition, at condition similar to the work of furnace. For study of the variation of mechanical properties, tensile tests were conducted at different temperatures, differential scanning calorimetry (DSC), relaxation tests, fatigue continuous cycles under triangular waveform and fatigue with trapezoid type waveform format \"dwell\" with residence times of 120 and 300 seconds as reflected by the E2714-13 standard and hot torsion tests. The purpose of this work lies in the fact that equipment such as pyrolysis furnaces do not maintain the constant operating parameters, varying temperature, workloads and also generate cyclic loading with residence times in starting cycles, operation and equipment stop It is important the knowledge of the phenomenological response that the material offers under these types of requests. The results of mechanical tests and micorestrutural evolution studies, as well as its further analysis provided data, not only in the form of \"data sheet\'s\" for application of the values obtained in projects, but co-after comparison of property and microstructure, deepen the phenomenology of the mechanical behavior of tension versus monotonic and cyclic deformation, deformation mechanisms at high temperature, dynamic recovery, the type of resulting microstructure after the tests and also the fracture mechanisms related to types of mechanical stresses imposed on the material, obtained by through the mechanical tests mentioned above.
5

Effect of hot working characteristics on the texture development in AISI 430 and 433 ferritic stainless steel

Annan, Kofi Ahomkah 10 June 2013 (has links)
The last seven hot rolling passes of the ferritic stainless steels (FSS) AISI 430 and AISI 433 (the latter an Al-added variant of 430) were simulated on Gleeble-1500D® and Gleeble-3800TM® thermo-mechanical simulators to investigate the effect of temperature, strain rate and inter-pass time on the development of texture in these steel grades and its subsequent influence on ridging. The compression tests were carried out over a wide range of strain rates (0.1 s-1 to 5 s-1, 25 s-1 and 50 s-1) and temperatures (1100 to 820 oC) with different inter-pass times (2 s, 10 s, 20 s and 30 s). The transition temperature from dynamic recrystallization (which may introduce a texture change) to dynamic recovery (in which no texture changes are expected) was determined by examining the relationship between the mean flow stress and the deformation temperature in multi-pass tests. Both macrotexture (XRD) and microtexture (EBSD) analyses were employed to characterise and study the texture present in these steels. It was found that the texture in the central layer of the compressed sample is a strong recrystallization-type. The through-thickness textural and microstructural banding was found to be responsible for ridging in these grades of stainless steels. Dynamic recrystallization which promotes the formation of the desired ã-fibre texture leading to high ductility, formability and eventually reduction or elimination of ridging, was found to occur in both AISI 430 and AISI 433 at high temperatures, low strain rates and longer inter-pass times with multi-pass testing. Generally AISI 433 has a stronger gamma texture developed than the AISI 430 when hot rolled under similar conditions, which leads to improved ductility and less ridging in AISI 433 than AISI 430. / Dissertation (MSc)--University of Pretoria, 2012. / Materials Science and Metallurgical Engineering / unrestricted
6

Influence of constitutive laws on the evolution of micromechanical field variables during deformation of FCC metals

Patil, Chaitali Shridhar 11 August 2022 (has links)
No description available.
7

Additive Manufacturing of NiTi Shape Memory Alloys with Biomedical Applications

Safdel, Ali January 2023 (has links)
This study focuses on the laser powder bed fusion processing of NiTi alloys and the feasibility of fabricating very thin stent structures for biomedical applications. A comprehensive correlation between the process and the material’s-structure and properties is established to facilitate the fabrication of NiTi alloys with tailored properties. In the first step, the impact of LPBF processing parameters and post-treatments on evolving the microstructure, texture, superelasticity, and asymmetry is examined. Subsequently, the feasibility of manufacturing very thin mesh structured stents is scrutinized followed by in-depth investigations into differently designed stents considering properties such as surface characteristics, mechanical properties, superelasticity, and recoverability. The obtained results and the represented discussions offer imperative insights, helping to better understand the complexity of the LPBF process and the present challenging aspects. Moreover, detailed contributions are made with the goal of paving the road ahead for the production of patient-specific NiTi stents with enhanced properties. / Thesis / Doctor of Philosophy (PhD)
8

ESTUDO IN SITU DA DEFORMAÇÃO CRIOGÊNICA DE METAIS CFC DE DIFERENTES ENERGIAS DE DEFEITO DE EMPILHAMENTO

Izumi, Marcel Tadashi 22 February 2018 (has links)
Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2018-04-26T13:22:22Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Marcel Tadshi Izumi.pdf: 4222698 bytes, checksum: e7c749993223b983b4e37d54985610de (MD5) / Made available in DSpace on 2018-04-26T13:22:22Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Marcel Tadshi Izumi.pdf: 4222698 bytes, checksum: e7c749993223b983b4e37d54985610de (MD5) Previous issue date: 2018-02-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Três metais CFC comercialmente puros (alumínio, cobre e prata) foram deformados por ensaios de tração uniaxial e caracterizados por difração de raios X in situ, utilizando uma fonte síncrotron, em temperatura ambiente (293K) e criogênica (77K). A supressão parcial da recuperação dinâmica decorrente do processamento criogênico permite melhorias nas propriedades mecânicas, tais como ductilidade e resistência. Esta supressão resulta em um aumento na densidade de defeitos internos dos metais durante a deformação, promovendo um refino microestrutural e aumento da microdeformação. O refino microestrutural é manifestado pela evolução de dimples na superfície de fratura e pela redução do tamanho médio de cristalitos. Todos os metais apresentaram maior resistência mecânica em temperaturas criogênicas, entretanto somente o cobre e a prata apresentaram aumento de ductilidade. Esse comportamento é atribuído à menor energia de defeito de empilhamento destes metais em comparação com o alumínio. / Three FCC commercially pure metals (aluminum, copper and silver) were deformed by uniaxial tensile tests and were characterized by in situ X-ray diffraction, using a synchrotron source, at room (293K) and cryogenic (77K) temperatures. The partial suppression of dynamic recovery due to cryogenic processing allows an improvement in mechanical properties, such as ductility and strength. This suppression results in an increase in the internal defects density of metals during the strain, promoting microstructural refining and increase of microstrain. The microstructural refinement is manifested by dimples evolution on the fracture surface and reduction of average crystallite size. All metals present higher mechanical strength at cryogenic temperature, nevertheless the ductility only was increased in copper and silver. This behavior is attributed to lower stacking fault energy of these metals in comparison with aluminum.
9

Effects of Very High Power Ultrasonic Additive Manufacturing Process Parameters on Hardness, Microstructure, and Texture of Aluminum 3003-H18 Alloy

Sojiphan, Kittichai 15 May 2015 (has links)
No description available.
10

離散型動態回復率模型之建構與應用 / Discrete dynamic recovery rate modeling and its application

邵惠敏, Shao, Hui Min Unknown Date (has links)
本文主要研究動態回復率之建構。並搭配使用機率勺斗法,將資產之離散損失分配建構出合成型擔保債權憑證分劵損失分配。歸納出離散動態回復率對合成型擔保憑證分劵之風險承擔與信用價差變化。本文發現在動態回復率中,即使在相同條件下有一樣預期損失,能使其債權群組損失分配之標準差較固定回復率小,且可使投資組合巨額損失部份產生厚尾分配現象。動態回復率對各分劵面臨共同存活與違約機率具有緩和或增強分劵承擔風險之作用。在單因子高斯連繫結構靜態違約下,透過隨機回復率能增加動態系統性風險因子之描繪。類似於將系統風險因子分配由標準常態分配改成t分配或是債權群組間違約相關係提高。

Page generated in 0.0812 seconds