• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 18
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 19
  • 15
  • 15
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Interactions of heperan sulfate and vitronectin with staphylococcus aureus

Liang, Olin D. January 1900 (has links)
Thesis (doctoral)--Lund University, 1995. / Added t.p. inserted.
22

Investigating bacterial outer membrane polymers and bacterial interactions with organic molecules using atomic force microscopy.

Atabek, Arzu. January 2006 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: Atomic force microscopy; proteins; Pseudomonas aeruginosa. Includes bibliographical references (leaves 107-130).
23

Interactions of heperan sulfate and vitronectin with staphylococcus aureus

Liang, Olin D. January 1900 (has links)
Thesis (doctoral)--Lund University, 1995. / Added t.p. inserted.
24

Investigating the effects of cranberry juice on the physicochemical properties of Escherichia coli for the prevention of urinary tract infections

Pinzon-Arango, Paola A. 09 January 2008 (has links)
The adhesion of bacteria to uroepithelial cells or urinary catheters is the first step in the development of biofilm formation and urinary tract infections (UTIs). Previous research has suggested that consumption of cranberry juice can prevent the recurrence of UTIs by decreasing bacterial adhesion since isolated compounds in cranberries, known as A-type proanthocyanidins (PACs), change the conformation of proteinaceous fimbriae that help attach bacteria to epithelial cell receptors. Most clinical and laboratory studies have shown the effects of cranberry juice cocktail (CJC) on large communities of bacteria; however, very few studies have evaluated how cranberry affects the adhesion forces of a single bacterium as well as effects on cellular composition and biofilm formation. We used atomic force microscopy (AFM) to investigate the effects of CJC and PACs on the adhesion forces between E. coli and a silicon nitride tip. Bacterial cultures were grown in tryptic soy broth (TSB), supplemented with 0 and 10 wt.% light cranberry juice cocktail (L-CJC) or 128 µg/mL PACs. E. coli bacteria were continuously cultured in the presence of cranberry products up to twelve times. Experiments were conducted at different scales to test bacterial attachment and adhesion forces. At the macroscale, bacteria were incubated with uroepithelial cells and the number of bacteria attached per uroepithelial cell was determined. In nanoscale experiments, the forces of adhesion between E. coli and a silicon nitride AFM tip were probed for bacteria grown in L-CJC or PACs for different numbers of culture times. Successive replacement of media and continued culture in L-CJC and PACs resulted in a significant decrease in adhesion forces for E. coli strains. Finally, during the continuous exposure of L-CJC to bacteria we examined the growth, morphology, and ability to form biofilms of E. coli. We found a decrease in growth rates related to changes in Gram staining with increasing number of cultures in L-CJC. Growth of bacteria in L-CJC or PACs inhibited the development of biofilms on polyvinyl-chloride, which can model biofilm formation on urinary catheters. We also determined that growth of E. coli in L-CJC results in prevention of the expression of indole which can be linked to the inhibition of biofilm formation. Our results help support the molecular mechanisms for the role of cranberry in preventing the adhesion of E. coli to biotic and abiotic surfaces, thus helping to scientifically validate the use of cranberry juice as a prophylactic treatment for the prevention of UTIs.
25

Biocompatible polymer microarrays for cellular high-content screening

Pernagallo, Salvatore January 2010 (has links)
The global aim of this thesis was to study the use of microarray technology for the screening and identification of biocompatible polymers, to understand physiological phenomena, and the design of biomaterials, implant surfaces and tissue-engineering scaffolds. This work was based upon the polymer microarray platform developed by the Bradley group. Polymer microarrays were successfully applied to find the best polymer supports for: (i) mouse fibroblast cells and used to evaluate cell biocompatibility and cell morphology. Fourteen polyurethanes demonstrated significant cellular adhesion. (ii) Analysis of the adhesion of human erythroleukaemic K562 suspension cells onto biomaterials with particular families of polyurethanes and polyacrylates identified. A DNA microarray study (to access the global gene expression profiles upon cellular binding) demonstrated that interactions between cells and some polyacrylates induced a number of transcriptomic changes. These results suggested that, during these interactions, a chain of cellular changes is triggered, most notably resulting in the downregulation of membrane receptors and ligands. (iii) Identification of polymers with potential applications in the field of stem cell biology. Polymers were identified that showed attachment, promotion and stabilisation of hepatocyte-like cells. A polyurethane support (PU-134) was pinpointed, which significantly improved both hepatocyte-like cell function and “lifespan”. A second project investigated biomaterials that promoted adhesion, growth and function of endothelial progenitor cells. A new polymer matrix was identified which contained the necessary signals to promote endothelial phenotype and function. This has potential application in the creation of blood vessels and the endothelialisation of artificial vessel prostheses and stent coatings for improving angioplasty therapy. (iv) The study of bacterial adhesion, focusing on the adhesion of food-borne pathogenic bacterium Salmonella enterica serovar typhimurium, strain SL1344, and the commensal bacterium Escherichia coli, strain W3110. Several polymers were found to support selective bacterial enrichment, as well as others that minimised bacterial adhesion.
26

Biossurfatantes como agentes inibidores da adesão de patógenos em superfícies de poliestireno / Biosurfactants as anti-adhesive compounds of several pathogenic bacteria on polystyrene surfaces

Zeraik, Ana Eliza 13 July 2009 (has links)
O estabelecimento de biofilmes microbianos em superfícies é responsável por inúmeros problemas, já que estes podem constituir uma fonte de microrganismos patogênicos e deteriorantes. A formação dos biofilmes é precedida pela adesão dos microrganismos, assim, medidas que inibem ou reduzem essa adesão contribuem para a redução da formação de biofilmes. Uma alternativa para reduzir a adesão é o tratamento prévio das superfícies com biossurfatantes, agentes tensoativos de origem microbiana que apresentam baixa toxicidade, a vantagem de serem biodegradáveis, possuindo ainda atividade antimicrobiana e antiadesiva. O principal objetivo deste trabalho foi avaliar a potencialidade dos biossurfatantes surfactina e ramnolipídeo como agentes inibidores da adesão de Listeria monocytogenes ATCC 19112, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Micrococcus luteus ATCC 4698 e Serratia marcescens ATCC 8100 em superfícies de poliestireno. Também foi estudada a influência de diferentes meios de cultura (TSYEA, ágar lactosado e ágar peptonado) e temperaturas (35ºC, 25ºC e 4ºC) sobre a adesão bacteriana. A surfactina apresentou maior capacidade em reduzir a adesão das bactérias em estudo, quando comparada ao ramnolipídeo. O meio TSYEA foi o que promoveu maior adesão ao poliestireno para maioria das bactérias. O condicionamento da superfície com surfactina reduziu entre 63% e 66% a adesão de L. monocytogenes, S. aureus e M. luteus (cultivadas em TSYEA). As melhores respostas antiadesivas foram obtidas quando o condicionamento da superfície e o ensaio de adesão foram realizados a 4ºC. A caracterização das superfícies de poliestireno (medidas de AC) e das superfícies bacterianas (teste MATS) forneceram informações que nos permitiram propor explicações sobre os fatores que influenciam o processo de adesão dos microrganismos nesta superfície, assim como o efeito antiadesivo exibido pela surfactina. Os resultados evidenciam a potencialidade do uso de surfactina como agente antiadesivo em superfícies de poliestireno, podendo atuar na inibição da adesão de vários patógenos. / Development of microbial biofilms on surfaces leads to various problems, since then can be a source of pathogenic microorganisms. Biofilms development are preceded by microbial adhesion, thus, procedures that inhibit or reduce adhesion contribute to reduce biofilm formation. An alternative to decrease bacterial attachment is the preconditioning of surfaces with biosurfactants, surface active products of microbial origin. This group of compounds has low toxicity, are biodegradable and present antimicrobial and anti-adhesive properties. The main goal of this study was to evaluate the potencial use of surfactin and rhamnolipid biossurfactants in the reduction of the adhesion of Listeria monocytogenes ATCC 19112, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Micrococcus luteus ATCC 4698 and Serratia marcescens ATCC 8100 on polystyrene surfaces. The research was carried out using three different nutritive media (TSYEA, lactose agar and peptone agar) and three different temperatures (35ºC, 25ºC e 4ºC). Surfactin showed a higher capacity to reduce bacterial adhesion than rhamnolipid. When cultivation was performed in TSYEA, most of the bacterial species showed the highest values of adhesion to polystyrene. Surface preconditioning with surfactin reduces 63% to 66% the adhesion of L. monocytogenes, S. aureus e M. luteus (culture media TSYEA). The most significant anti-adhesive results were obtained when both, preconditioning and adhesion assay were carried out at 4ºC. Polystyrene surfaces characterization (contact angle measurements) and bacterial cells characterization (MATS test) provided information that allowed some explanation about the factors that influence microbial adhesion process on this surface and the anti-adhesive effect caused by surfactin. The results showed that surfactin has a great potencial to be used as anti-adhesive compound on polystyrene surfaces, reducing the attachment of several pathogenic bacteria.
27

Biossurfatantes como agentes inibidores da adesão de patógenos em superfícies de poliestireno / Biosurfactants as anti-adhesive compounds of several pathogenic bacteria on polystyrene surfaces

Ana Eliza Zeraik 13 July 2009 (has links)
O estabelecimento de biofilmes microbianos em superfícies é responsável por inúmeros problemas, já que estes podem constituir uma fonte de microrganismos patogênicos e deteriorantes. A formação dos biofilmes é precedida pela adesão dos microrganismos, assim, medidas que inibem ou reduzem essa adesão contribuem para a redução da formação de biofilmes. Uma alternativa para reduzir a adesão é o tratamento prévio das superfícies com biossurfatantes, agentes tensoativos de origem microbiana que apresentam baixa toxicidade, a vantagem de serem biodegradáveis, possuindo ainda atividade antimicrobiana e antiadesiva. O principal objetivo deste trabalho foi avaliar a potencialidade dos biossurfatantes surfactina e ramnolipídeo como agentes inibidores da adesão de Listeria monocytogenes ATCC 19112, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Micrococcus luteus ATCC 4698 e Serratia marcescens ATCC 8100 em superfícies de poliestireno. Também foi estudada a influência de diferentes meios de cultura (TSYEA, ágar lactosado e ágar peptonado) e temperaturas (35ºC, 25ºC e 4ºC) sobre a adesão bacteriana. A surfactina apresentou maior capacidade em reduzir a adesão das bactérias em estudo, quando comparada ao ramnolipídeo. O meio TSYEA foi o que promoveu maior adesão ao poliestireno para maioria das bactérias. O condicionamento da superfície com surfactina reduziu entre 63% e 66% a adesão de L. monocytogenes, S. aureus e M. luteus (cultivadas em TSYEA). As melhores respostas antiadesivas foram obtidas quando o condicionamento da superfície e o ensaio de adesão foram realizados a 4ºC. A caracterização das superfícies de poliestireno (medidas de AC) e das superfícies bacterianas (teste MATS) forneceram informações que nos permitiram propor explicações sobre os fatores que influenciam o processo de adesão dos microrganismos nesta superfície, assim como o efeito antiadesivo exibido pela surfactina. Os resultados evidenciam a potencialidade do uso de surfactina como agente antiadesivo em superfícies de poliestireno, podendo atuar na inibição da adesão de vários patógenos. / Development of microbial biofilms on surfaces leads to various problems, since then can be a source of pathogenic microorganisms. Biofilms development are preceded by microbial adhesion, thus, procedures that inhibit or reduce adhesion contribute to reduce biofilm formation. An alternative to decrease bacterial attachment is the preconditioning of surfaces with biosurfactants, surface active products of microbial origin. This group of compounds has low toxicity, are biodegradable and present antimicrobial and anti-adhesive properties. The main goal of this study was to evaluate the potencial use of surfactin and rhamnolipid biossurfactants in the reduction of the adhesion of Listeria monocytogenes ATCC 19112, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Micrococcus luteus ATCC 4698 and Serratia marcescens ATCC 8100 on polystyrene surfaces. The research was carried out using three different nutritive media (TSYEA, lactose agar and peptone agar) and three different temperatures (35ºC, 25ºC e 4ºC). Surfactin showed a higher capacity to reduce bacterial adhesion than rhamnolipid. When cultivation was performed in TSYEA, most of the bacterial species showed the highest values of adhesion to polystyrene. Surface preconditioning with surfactin reduces 63% to 66% the adhesion of L. monocytogenes, S. aureus e M. luteus (culture media TSYEA). The most significant anti-adhesive results were obtained when both, preconditioning and adhesion assay were carried out at 4ºC. Polystyrene surfaces characterization (contact angle measurements) and bacterial cells characterization (MATS test) provided information that allowed some explanation about the factors that influence microbial adhesion process on this surface and the anti-adhesive effect caused by surfactin. The results showed that surfactin has a great potencial to be used as anti-adhesive compound on polystyrene surfaces, reducing the attachment of several pathogenic bacteria.
28

Initial adhesion of EPS producing bacteria Burkholderia cepacia – the impact of cranberry juice

Yang, Xuejiao Unknown Date
No description available.
29

Initial adhesion of EPS producing bacteria Burkholderia cepacia the impact of cranberry juice

Yang, Xuejiao 11 1900 (has links)
The impact of cranberry juice was investigated with respect to the initial adhesion of three isogenic Burkholderia cepacia bacteria with different extracellular polymeric substance (EPS) producing capacities: a wild-type cepacian EPS producer PC184, mutant bacteria PC184rml with reduced EPS production, and PC184bceK with a deficiency in EPS production. Adhesion experiments demonstrated that in the presence of cranberry juice, the adhesive capacity of PC184 was largely reduced, while cranberry juice had little impact on the adhesion of either mutant. Thermodynamic modeling supported results from adhesion experiments. For PC184, the surface free energy change Gadh switched from negative in the absence of cranberry juice to positive when cranberry juice was added. Surface force apparatus (SFA) and scanning electron microscopy (SEM) studies demonstrated strong adsorption of cranberry juice components to bacterial EPS. It was concluded that cranberry juice components could impact bacterial initial adhesion by adhering to EPS and impairing bacterial adhesive capacity. / Environmental Engineering
30

Adhesion-related interactions of Actinomyces and Streptococcus biofilm bacteria /

Drobni, Mirva, January 2006 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2006. / Härtill 4 uppsatser.

Page generated in 0.0754 seconds