• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression of the red cell anion exchanger in mammalian cells

Beckmann, Roland January 1999 (has links)
No description available.
2

The Role of Erythrocyte Membrane Proteins in Haemolytic Anaemias in South African Populations

Vallet, Lara Dominique 16 November 2006 (has links)
Faculty of Science School of Pathology(Molecular Medicine and Haematology). 9707563v tridium@acenet.co.za / The erythrocyte carries gases between the cells and the lungs, and has to distort to negotiate narrow splenic sinuses and capillaries. This distortion necessitates a high surface area to volume ratio that is maintained by the erythrocyte membrane skeleton, a network of proteins including spectrin and protein 4.1. The skeleton anchors the lipid bilayer through attachment to integral membrane proteins, notably the anion exchange protein, band 3. Abnormalities of the erythrocyte membrane proteins cause loss of cell elasticity and ultimately the erythrocytes become prematurely trapped in the spleen where they are phagocytosed, resulting in haemolytic anaemia. Three mutations causing band 3-deficient hereditary spherocytosis (HS), a haemolytic anaemia characterised by spherical erythrocytes, were located using restriction enzyme analysis and DNA sequencing. Proband A (Black) is heterozygous for band 3 Pinhal (R490H) and has mild clinical symptoms. Proband B and his mother (Caucasian) are heterozygous for band 3 Bicetre (R490C) and have severe anaemia requiring transfusions and splenectomy, respectively. These results confirm codon 490 as a hotspot for mutations and indicate the effect of different amino acid substitutions in the same position on clinical severity. Proband C (Black) is homozygous for a novel mutation (E508K) for which her parents are heterozygous. The proband is severely affected and transfusion- dependent whereas her father has moderate anaemia and her mother is asymptomatic. It is speculated that a secondary factor modulates their clinical symptoms. All of these mutations occur in a CpG dinucleotide, a common source of DNA mutations, and are located within the highly conserved exon 13, which encodes the third to fifth α-helices and the second extracellular loop of the transmembrane region of band 3. The mutations are likely to alter the conformation of band 3, impairing its insertion into the erythrocyte membrane. No causative mutations were located in another 12 band 3-deficient HS kindred using restriction enzymes and single strand conformation polymorphism analysis. Ten protein 4.1-deficient patients with hereditary elliptocytosis, a haemolytic anaemia characterised by elliptical erythrocytes, were also studied. Immunoblot analyses ruled out abnormally sized protein 4.1 and three known DNA mutations were excluded using restriction enzyme analysis. Further studies are required to elucidate the cause of the haemolytic anaemia in these kindred. This study advanced our knowledge of the molecular basis of HS in South African kindred and highlighted the susceptibility of CpG dinucleotides to mutations.
3

Membrane Channel Protein Abnormalities and Autoantibodies in Neurological Disease

Kay, Marguerite M., Goodman, Joseph, Lawrence, Christine, Bosman, Gieljan 01 January 1990 (has links)
Immunological analogues of band 3, the anion transporter of the human erythrocyte, have been identified in all cells, including both isolated neurons and neurons of the central nervous system. We hypothesized that the anion channel is altered in neurological disease associated with choreiform movements because γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in mammalian brain, binds to its receptor and opens an integral membrane chloride channel. In order to examine this hypothesis, we studied a family with a serious, progressive, genetic neurologic disorder with acanthocytosis (choreoacanthocytosis) that resembles Huntington's chorea. We selected choreoacanthocytosis because erythrocytes, which are readily obtained, are affected in this disease as well as the central nervous system. Biochemical studies of erythrocytes from the proposita, mother, and brother revealed that sulfate transport Vmax was increased, and glucose efflux was decreased. Erythrocytes exhibited immunological changes indicative of cellular aging/transporter damage. In addition, transporter reactive antibodies were present. This is the first evidence for abnormalities of membrane transport in this neurologic disorder.
4

The effects of a nearby biological body on the parameters of a small hand-held radio operating in the H.F. band (3 MHz-30 MHz)

Cooper, Rick January 1992 (has links)
No description available.
5

INHIBITION OF ERYTHROCYTE BAND 3 TYROSINE PHOSPHORYLATION: CHARACTERIZATION OF A NOVEL THERAPY FOR SICKLE CELL DISEASE AND MALARIA

Panae Noomuna (10716546) 29 April 2021 (has links)
While the molecular defect that cause sickle cell disease has well been established, the cause of vaso-occlusive crisis remains elusive and largely debated upon. Majority of studies have linked the painful episodes to polymerization of sickle hemoglobin following its deoxygenation. The variability of the disease symptoms among patients, compounds efforts for a holistic therapy. Hydroxyurea, a stimulator of Hb F induction and a widely used treatment, has ameliorated the complication of SCD but it is only effective in 50% of the patients. Expression of Hb F lowers the content of Hb S in blood and hence reduces oxidative stress caused by Hb S denaturation. Sickle cell disease severity depends on several factors. Most importantly, the ability of red cell to sickle dominates all other determinants. While deoxygenation of sickle hemoglobin may be inevitable, the duration with which the red cell remains in the deoxygenated state can be manipulated. Deoxygenation is a transient process that when compared to the time taken to develop the long filaments of deoxyhemoglobin to causes severe sickling, the red cell would have been cycled back to the lungs and re-oxygenated to restore the healthy conditions of the cell. In fact, if sickle cells would flow as fast as healthy erythrocytes, the detrimental impacts of sickling such as vaso-occlusive crisis, would not be a concern for this disease. Unfortunately, the unstable sickle hemoglobin undergoes denaturation through auto-oxidation, which imposes oxidative stress to the cells. The oxidative stress inhibits erythrocytes tyrosine phosphatases, a course which subsequently impair their constitutive action against the tyrosine kinases. In the end, a net tyrosine phosphorylation state in the red cell membrane proteins, most notably the transmembrane protein band 3, succeeds. Band 3 tyrosine phosphorylation abrogates the protein’s interaction with ankyrin and spectrin-actin cytoskeleton, hence the cytoskeleton loses its major anchorage to the membrane thus engendering membrane destabilization. A destabilized erythrocyte sheds membrane fragments in form of microvesicles/microparticles and discharges free hemoglobin into the extra cellular matrix. In consequence, the microparticles power initiation of coagulation cascade through activation of thrombin, while free Hb inflicts inflammation, scavenges nitric oxide which is necessary for vasodilation and induces further oxidative stress within the microvasculature, and activates expression of adhesion receptors on the endothelium. Taken together, these events culminate in entrapment of red cells (not naming leucocytes and platelets) in the microvasculature, blockade of blood vessels and further damage of erythrocytes through prolonged deoxygenated state thus terminating in tissue injury, strokes, and organ damage, amid vaso-occlusive episodes which always require hospitalization and extensive medical care for survival. Band 3 tyrosine phosphorylation and membrane weakening is not unique just to SCD, but also a druggable target for malaria. Malaria, a disease that is touted as the evolutionary cause of sickle cell disease, surprisingly thrives through the same mechanism. Briefly, malaria parasite consumes hemoglobin for its DNA synthesis, and in the process generate reactive oxygen species from denatured hemoglobin that feeds into the oxidative stress which triggers band 3 tyrosine phosphorylation. In this case however, a destabilized membrane offers perfect conditions for merozoites’ (malaria daughter parasites) egress/exit out of the cell to begin infecting other red cells. Ultimately, the ensuing anemia and organ dysfunction leads to patient’s death. Treatment of diseased cells with imatinib and other Syk inhibitors effectively reversed membrane weakening. A stabilized membrane not only survives longer in circulation to alleviate SCD symptoms but also traps and starves malaria parasite leading to termination of the parasitic infection. With band 3 tyrosine phosphorylation at center stage, this dissertation explores the above events in an effort to unveil a novel therapy for sickle cell and malaria diseases. First, the therapeutic strategy regarding SCD is discussed in detail beginning with non-transfused patients and ending in additional mechanistic study on inactivation of the principal erythrocyte’s protein tyrosine phosphatase 1 B, PTP1B. The dissertation then provides an initial proof of concept on efficacy of imatinib in treatment of malaria as a monotherapy and its efficacy when used in a triple combination therapy with the standard of care treatment. Finally, I outline an alternative possible mechanism of action of quinine against malaria.
6

Implication du stress oxydant dans la physiopathologie de la drépanocytose : crises vaso-occlusives, taux d'anticorps anti-bande 3 et oxydation du globule rouge / Implication of oxidative stress in the pathophysiology of sickle cell disease : vaso-occlusive crisis, antiband 3 antibodies levels and red blood cell oxidation

Hierso, Régine 08 July 2015 (has links)
A partir du défaut premier de la drépanocytose, la polymérisation de l’hémoglobine S (HbS), se développe toute une série de processus anormaux qui contribuent au développement d’une réponse inflammatoire et d’un stress oxydant dus à une hypoxie-reperfusion traumatisante et à l’auto-oxydation de l’HbS. L’exacerbation du stress oxydatif semble participer de manière active aux mécanismes physiopathologiques de la maladie et jouer un rôle dans la survenue des crises vaso-occlusives (CVO). Les travaux menés dans le cadre de cette thèse avaient pour objectif de mieux documenter les effets délétères du stress oxydant sur le globule rouge et son impact dans le développement des CVO. Nous avons, en premier lieu, évalué in vitro l’impact du stress oxydant sur la rhéologie sanguine des patients drépanocytaires SS et SC à l’aide d’un agent à fort potentiel oxydant, le t-butyl hydroperoxide (TBHP). Nous avons montré que les globules rouges des patients drépanocytaires (GR SS) produisent en présence du TBHP davantage de radicaux libres que les GR provenant de sujets contrôles (GR AA) et que ces GR SS présentent un système de défense anti-oxydant diminué. L’induction d’un stress oxydant accentue les altérations rhéologiques déjà présentes chez les patients drépanocytaires (i.e, déformabilité diminuée, diminution de l’indice d’agrégation, augmentation du seuil de désagrégation) tandis qu’il induit chez les sujets contrôles un profil hémorhéologique altéré proche de celui déjà préexistant chez les patients drépanocytaires. Ces résultats suggèrent que le stress oxydant, en participant aux anomalies hémorhéologiques associées à la drépanocytose, pourrait être l’un des facteurs favorisant la survenue des complications drépanocytaires. Nous nous sommes de plus attachés à documenter directement l’impact du stress oxydant dans le développement des CVO en analysant des prélèvements sanguins provenant de patients drépanocytaires SS en crise et à l’état de base. Il s’agissait : 1) de tester l’hypothèse selon laquelle la protéine bande 3, protéine de la membrane du GR, est une cible majeure des espèces réactives de l’oxygène qui provoquent au niveau de cette protéine l’apparition d’épitopes de senescence reconnus par des auto anticorps anti-bande 3 ; 2) d’évaluer l’évolution de marqueurs moléculaires et cellulaires pro- et anti-oxydants ; 3) d’étudier l’évolution des paramètres hémorhéologiques ; 4) d’explorer l’activité du système nerveux autonome, considéré comme un marqueur potentiel de sévérité. Nous avons mis en évidence au cours des CVO : 1) une exacerbation du stress oxydant ; 2) une diminution du taux d’anticorps anti-bande 3 et une augmentation de la concentration plasmatique de microparticules érythrocytaires, suggérant que ces deux processus sont liés au phénomène de clusterisation de la protéine bande 3 déclenché par le stress oxydant ; 3) une exacerbation des anomalies hémorhéologiques se traduisant par une réduction de la déformabilité érythrocytaire, une augmentation de l’agrégation érythrocytaire et du seuil de désagrégation ; 4) une altération du système nerveux autonome marqué par un retrait de l’activité parasympathique, ce déséquilibre étant accentué au cours des CVO. Les travaux de cette thèse se traduisent par à une meilleure compréhension de la physiopathologie extrêmement complexe de la drépanocytose en précisant l’impact du stress oxydant dans le déclenchement des CVO, première cause d’hospitalisation des sujets drépanocytaires. Les données obtenues, qui mettent en évidence des marqueurs pertinents de ce stress oxydant au cours de la CVO du sujet drépanocytaire, pourront favoriser la mise en œuvre de nouvelles pistes thérapeutiques anti-oxydantes et une amélioration in fine de la prise en charge des patients. / Besides the primary defect of sickle cell disease, hemoglobin S (HbS) polymerization, other abnormal processes may contribute to the development of an inflammatory response and to an oxidative stress caused by traumatic hypoxia-reperfusion and autoxidation of HbS. The exacerbation of oxidative stress seems to participate actively in the pathophysiology of the disease and play a role in vaso-occlusive crisis (VOC). The aim of this thesis was to document the deleterious effects of oxidative stress on the red blood cell and its impact in the development of VOC. First, we have evaluated the impact of tert-butyl hydroperoxide-induced oxidative stress on blood rheology of SS and SC sickle cell patients. We have shown that sickle red blood cells (SS RBC) produce more free radicals in the presence of tert-butyl hydroperoxide (TBHP) than control subject red blood cells (AA RBC). Furthermore, SS RBC have a decreased anti-oxidant defense system. Induction of oxidative stress increases the rheological alterations already present in sickle cell patients (ie, decreased deformability, reduced aggregation, increased disaggregation threshold). In control subjects, oxidative stress induces an altered hemorheological profile close to that already present in sickle cell patients. These results suggest that oxidative stress by modulating the hemorheological abnormalities associated with sickle cell disease, could be one of the factors promoting the occurrence of sickle cell complications. Then, we have studied the impact of oxidative stress in the development of VOC, analyzing blood samples from SS patients in crisis and at steady state. 1) We have tested the hypothesis that the protein band 3 of RBC, is a major target of reactive oxygen species, which cause the appearance of senescence epitopes of this protein recognized by auto anti-band 3 antibodies; 2) We have evaluated pro- and anti-oxidants molecular and cellular markers; 3) We have studied the evolution of hemorheological parameters; 4) We have explored the activity of the autonomic nervous system, seen as a potential marker of severity. Our results show during VOC: 1) an exacerbation of the oxidative stress; 2) a decrease in anti-band 3 antibodies levels and an increase in the plasma concentration of erythrocyte microparticles, suggesting that these two processes are linked to the clustering phenomenon of band 3 protein triggered by oxidative stress; 3) an exacerbation of hemorheological abnormalities resulting in a reduction of SS RBC deformability, increased aggregation and disaggregation threshold; 4) an impairment of the autonomic nervous system marked by a withdrawal of parasympathetic activity and this imbalance is accentuated during VOC. This work allows a better understanding of the complex pathophysiology of sickle cell disease, highlighting the impact of oxidative stress in the development of VOC, the leading cause of hospitalization of sickle cell subjects. The data obtained, which reveal relevant markers of oxidative stress during VOC, could promote the implementation of new antioxidant therapeutic approaches and help improving sickle cell patients care.
7

TYROSINE PHOSPHORYLATION MEDIATED REMODELING OF THE ERYTHROCYTE MEMBRANE IN SICKLE CELL DISEASE

John M Hausman (14043162) 04 November 2022 (has links)
<p>The pathological hallmarks of sickle cell disease originate from a single mutation of the beta hemoglobin gene resulting in a valine at position 6 instead of the canonical glutamic acid. This small change perpetuates many factors, manifesting into chronic embolic processes in the microvasculature, causing painful vaso-occlusive episodes and eventual organ failure. There have been numerous therapies developed to reduce the mortality of sickle cell ranging from agents to induce production of fetal hemoglobin to chronic blood transfusions. Although each of these options are effective at improving the quality of life for sickle cell patients, they only treat one aspect of the disease and, for some, become ineffective over time. In the hope of producing a better therapy, a better understanding of the pathogenesis of vaso-occlusive episodes is needed. While many models have been offered to account for these vaso-occlusive events, one recently proposed mechanism stems from the elevated tyrosine phosphorylation of the cytoplasmic domain of the major erythrocyte membrane protein, Band 3. Band 3 serves as a hub for many critical proteins in the red cell. It binds ankyrin, which associates the spectrin cortical cytoskeleton to the red cell membrane, deoxygenated hemoglobin, the kinases Wnk1 and OSR1, which regulate cation transport, and a glycolytic enzyme metabolon that regulates the production of ATP and glutathione. When Band 3 is tyrosine phosphorylated, each of these proteins dissociate, causing significant changes to red cell homeostasis. These changes include an accumulation of reactive oxygen species, vesiculation and release of prothrombotic microvesicles, leakage of cell free hemoglobin, and a decrease in cell volume. Normally, Band 3 exists in a predominantly unphosphorylated state, however, in sickle cell disease, Band 3 is abundantly tyrosine phosphorylated. Reduction in the tyrosine phosphorylation of Band 3 has been documented to prevent the release of microvesicles and hemoglobin from sickle cell red blood cells. Because these microvesicles and cell free hemoglobin contribute to the vaso-occlusive episodes in sickle cell patients, inhibiting the mechanism for their release offers a potential therapeutic option. But to accomplish this, the molecular cause for the elevated tyrosine phosphorylation in sickle cell disease must be identified. Since tyrosine phosphorylation is performed by a tyrosine kinase and removed by a tyrosine phosphatase, the elevation in phosphorylation must be due to changes in both of these processes. Unfortunately, the identity and nature of these kinases and phosphatases are poorly understood. In this dissertation, I identified the tyrosine kinases Syk, Lyn, and Src attributed to Band 3</p> <p>15</p> <p>phosphorylation that facilitates the release of microvesicles and hemoglobin in sickle cell red blood cells. Inhibition of Syk or one of the two Src family kinases is sufficient to prevent the destabilization of the red blood cell membrane. These kinases function in a hierarchy, where one of the three Src family kinase, Lyn phosphorylates Syk, activating it, and promoting the phosphorylation of Band 3 at tyrosines 8 and 21. Prevention of either phosphorylation event prevents the release of microvesicles and cell free hemoglobin. I also report the identification of PTP1B as the tyrosine phosphatase responsible for maintaining Band 3 in an unphosphorylated state. Interestingly, in sickle cell disease, this tyrosine phosphatase is proteolytically cleaved, resulting in a reduction in dephosphorylating potential. It has been reported previously that PTP1B is a substrate of the calcium dependent protease, calpain and that calpain inhibitors improve the cell morphology of sickle erythrocytes. Inhibition of this proteolytic process may offer an additional therapeutic option for the treatment of sickle cell disease.</p>

Page generated in 0.3081 seconds