Spelling suggestions: "subject:"bands d'absorption"" "subject:"banda d'absorption""
1 |
Etude du comportement sous choc d'un matériau énergétique par spectroscopie Raman in situ / Study of the shock to detonation transition phenomenon in high explosivesSaint Amans, Charles 14 November 2014 (has links)
L’amélioration des performances des dispositifs pyrotechniques requiert une description fine de la transition choc/détonation (TCD) dans les explosifs. Les modèles de TCD existant comportent une part d’empirisme qu’il est souhaitable de réduire à l’aide de données expérimentales à l’échelle microscopique. Pour cela, nous avons mis au point un dispositif permettant de générer des chocs de 2 à 30 GPa et d’analyser en temps réel l’évolution du matériau par spectroscopie. Le système de mesure comporte un laser sonde et un ensemble de spectroscopie Raman rapide. Ce dispositif a été utilisé pour l’étude des mécanismes d’initiation d’un explosif appelé TATB. L’évolution des spectres Raman en fonction de la pression révèle un couplage entre les modes de vibration des groupements NO2 et NH2 provenant de la présence d’un réseau de liaisons hydrogène au sein du TATB. Ce réseau est responsable de la grande stabilité de la molécule. Quelques différences entre les régimes statique et dynamique, imputables à l’effet du chauffage par le choc, sont mises en évidence ; elles semblent indiquer un affaiblissement du réseau de liaisons hydrogène. Les résultats font également apparaître une atténuation progressive du signal Raman sous choc avec la pression. A partir de 9 GPa, le signal n’est plus détectable. Des visualisations par caméras rapides montrent que cette atténuation du signal Raman est accompagnée d’un assombrissement progressif du TATB qui devient totalement opaque à 9 GPa. Des expériences de réflectivité sous choc ont montré que ces deux phénomènes sont dus à un élargissement de la bande d’absorption du TATB. / Improving performances and safety of pyrotechnic devices requires a sharp knowledge of the shock to detonation transition phenomenon in high explosives. Current models to describe this phenomenon largely involve empiric parameters based on macro scale experiments. To improve predictive capability of these models, it is necessary to get experimental data at a microscopic scale. To provide such data, we developed an experimental setup to shock a high explosive up to 30 GPa and perform in-situ measurement of its Raman spectra under this loading. The device includes a shock generator based on explosive driven plate impact triggered by a laser pulse and a diagnostic involving an excitation laser and a spectrometer coupled with an intensified CCD. This experiment has been applied to an insensitive high explosive named TATB. Pressure driven evolution of the Raman spectra reveals an important coupling between NO2 and NH2 vibration modes that is due to a strong H bonding within TATB crystal. This bonding is clearly linked to TATB high stability. Differences observed between dynamic and static loading are attributed to shock heating resulting in H bonding weakening. Moreover, results show a progressive decrease in Raman spectra intensity with increasing shock pressure down to a complete signal loss at about 9 GPa. High speed visualisations reveal a progressive darkening of the sample leading to complete opacity at 9 GPa. Reflectivity measurements under shock loading show that these two phenomena are due to a shock-induced enlargement of the TATB absorption band.
|
2 |
Influence de la structure des couverts végétaux en télédétection de la fluorescence chlorophyllienneFournier, Antoine 28 November 2011 (has links) (PDF)
La télédétection de la végétation continentale repose classiquement sur des indices de réflectance qui renseignent sur l'état des couverts (indice foliaire, fraction de trou, biomasse). L'émission de fluorescence qui accompagne l'activité photosynthétique porte une information sur le fonctionnement de la végétation. Les récentes évolutions instrumentales permettent de suivre la fluorescence des couverts, néanmoins l'interprétation de ce signal en termes physiologiques nécessite de prendre en compte l'influence de la structure du couvert sur le signal de fluorescence. Le défi actuel est de passer du niveau de la feuille (2D) au niveau des couverts végétaux (3D). Un premier travail a été le développement d'un dispositif pour la mesure quantitative de la déformation spectrale de l'émission de fluorescence lors du changement d'échelle. Ce dispositif appliqué sur différents couverts, a permis d'identifier les paramètres prépondérants de la déformation spectrale. La simulation à l'aide du modèle FluoSAIL confirme ces observations. Un couvert de blé sénescent (3D, non fluorescent) a également été suivi pour quantifier l'impact de la géométrie du couvert sur la mesure de fluorescence. Une simulation réalisée à l'aide des modèles SAIL et MODTRAN a permis de dégager les configurations de mesures pour lesquelles cet effet peut être négligé. Les campagnes de mesures ont également permis d'approfondir la signification de la fluorescence mesurée au niveau du couvert. En particulier, la mesure simultanée de fluorescence et d'échanges gazeux d'un couvert agricole a permis l'étude de la relation entre les indices de fluorescence et l'assimilation de CO2 du couvert.
|
Page generated in 0.107 seconds