511 |
modeling pure vasogenic edema in the rat brainnottingham, charles 25 July 2008 (has links)
Targeted drug delivery to the brain is difficult to achieve using conventional techniques, largely due to the blood-brain barrier’s (BBB) impediment to drug diffusion into the brain parenchyma. In response, development of convection-enhanced delivery (CED) offers the ability to circumvent the BBB and target specific areas of the brain. Predictability of infusate movement in pathological brain states during CED will maximize the effectiveness of this treatment, and therefore modeling of infusate movement must be characterized. Previous work from our lab effectively modeled CED in rats using the middle carotid artery occlusion model of cytotoxic edema. However, previous models examined for vasogenic edema study did not show pure vasogenic edema. The purpose of this study was to develop a model of pure vasogenic edema in the rat brain. In this study, we show that stereotactic 9 µL infusion of 1.0 mM DCA over 45 minutes into the rat corpus callosum reproducibly creates pure vasogenic edema, as observed in the peritumoral white matter surrounding gliomas.
|
512 |
AVIAN DISPERSAL OF THE ACTINOMYCETE FRANKIA ACROSS A BARRIER ISLAND LANDSCAPEBissett, Spencer 08 October 2008 (has links)
In the nutrient-poor soils characteristic of coastal environments, symbiotic association with the nitrogen-fixing root endosymbiont Frankia is essential to establishment and survival of the woody shrub Morella cerifera. Nutrient deficiency quickly becomes severe unless seedlings are infected by Frankia soon after germination. However, the means of arrival of Frankia prior to shrub establishment has not been determined. Using sterilized lab-grown M. cerifera seedlings and fecal samples collected from passerine birds on the Eastern Shore of Virginia, viability of avian dispersal of the bacteria was tested. Although passerine fecal samples did produce nodules on some sterilized M. cerifera seedlings, these experimental inoculations did not lead to significantly higher likelihood of nodulation, relative to sterilized reference seedlings. Non-sterilized seedlings displayed greatest percent nodulation; results suggest that passerines contribute to Frankia dispersal, but also that the actinomycete is contained on or within viable seeds or fruits of M. cerifera, and therefore may be co-dispersed directly from the parent plant.
|
513 |
CONSEQUENCES OF SHRUB ENCROACHMENT: LINKING CHANGES IN CANOPY STRUCTURE TO SHIFTS IN THE RESOURCE ENVIRONMENTBrantley, Steven 22 April 2009 (has links)
Shrub expansion in herbaceous ecosystems is emerging as an important ecological response to global change, especially in mesic systems where increases in canopy biomass are greatest. Two consequences of woody encroachment are increases in belowground resources, such as carbon and nitrogen, and reductions in above-ground resources such as light, which affect diversity, community trajectory, and ecosystem function. My objective was to determine how expansion of the nitrogen-fixing shrub Morella cerifera affected the resource environment across a chronosequence of shrub expansion on a Virginia barrier island. I quantified changes in carbon (C) and nitrogen (N) cycling, canopy structure and understory light associated with M. cerifera expansion. Litterfall in shrub thickets exceeded litterfall for other woody communities in the same region, and due to high N concentration, resulted in a return of as much as 169 kg N ha-1 yr-1 to the soil, 70% of which was from symbiotic N fixation. Litter and soil C and N pools were 3-10 times higher in shrub thickets than in adjacent grasslands. Understory light in shrub thickets decreased to as low as 0.5% of above-canopy light. Sunflecks in shrub thickets were shorter, smaller and less intense than sunflecks in forest understories. However, relative to other shrub species such as Elaeagnus umbellata, M. cerifera was less efficient at intercepting light. Although M. cerifera had the highest leaf area index (LAI) of five shrub species studied, M. cerifera was relatively inefficient at light attenuation due to low levels of branching, steep leaf angles and a relatively shallow canopy. The shift from grassland to shrub thicket on barrier islands, and in other mesic systems, results in a significant change in canopy structure that alters understory resource availability and greatly alters ecosystem function and trajectory.
|
514 |
CHANGES IN LEAF MORPHOLOGY, PHOTOSYNTHESIS AND NITROGEN CONTENT IN TWO COASTAL SHRUBSKost, Elizabeth 03 May 2011 (has links)
It is important to understand mechanisms that facilitate expansion of two common shrubs, Morella cerifera and Baccharis halimifolia in coastal environments. The purpose of my study was to investigate the physiological and structural changes that occur as leaves age. Photosynthesis, incident light, chlorophyll, and leaf C:N ratios were quantified for young, intermediate, and old leaves (distal, central and proximal leaves, respectively). Leaf structural differences were also compared. Leaves did not change morphologically with age. Light decreased with leaf age and during winter months. Photosynthesis showed no seasonal or age related patterns. Chlorophyll increased initially and then declined with age due to self shading. Nitrogen content was highest during spring. Seasonality and leaf age had unique effects on the two study species. Understanding senescence adaptations of these two shrubs can help explain their abundance in coastal ecosystems.
|
515 |
Compréhension des mécanismes de transferts de gaz et de composés organiques dans le Polylactide (PLA) / Mechanisms of gas and organic compounds tranfer into Polylactide (PLA)Courgneau, Cécile 09 May 2011 (has links)
La compréhension de la relation structure-propriété est un élément indispensable pour la conception et l'amélioration des matériaux, notamment ceux utilisés dans le domaine de l'emballage alimentaire. Afin de contribuer à la compréhension des phénomènes de transport dans le polylactide (PLA), les travaux de ce mémoire se sont portés sur la modulation de la microstructure du PLA en lien avec ses propriétés barrière aux gaz (oxygène, hélium) et aux composés organiques (esters éthyliques, sondes fluorescentes). La microstructure a été modulée i) par l'ajout de plastifiant (ATBC, PEG), ii) par la cristallisation selon trois procédés, le traitement thermique, la cristallisation induite par des composés organiques et le biétirage. Ces approches ont permis, respectivement, de faire varier le pourcentage de phase amorphe par rapport à la phase cristalline, la fraction de volume libre au sein de la phase amorphe, et la structure cristalline. L'augmentation de la cristallinité par recuit à partir du vitreux n'a pas conduit à une diminution systématique et importante des coefficients de transport des molécules de gaz (oxygène, hélium). Deux hypothèses principales ont ainsi été formulées pour expliquer ce comportement : la dédensification de la phase amorphe et la présence d'une phase amorphe mobile et d'une phase rigide. L'influence du biétirage sur les propriétés barrière aux gaz a été très limitée même au plus fort ratio d'étirage (4×4). Néanmoins cette technique a l'avantage de pouvoir réaliser des morphologies différentes.L'étude des coefficients de transport par plusieurs méthodes (sorption, perméation, diffusion par contact solide/solide) a mis en évidence la loi d'échelle ( ) dans le cas des molécules fluorescentes et a permis une première estimation du coefficient alpha. Une approche par Résonance Paramagnétique Electronique a permis de mettre en évidence des séparations de phase des systèmes plastifiés par ATBC et PEG. Cette méthode pourrait constituer un des moyens de sonder les hétérogénéités locales et les changements microstructuraux liés à l'interaction de molécules perméantes et de la matrice polymère, lors du transport. / The understanding of the relationship between structure and properties is fundamental for materials conception and improvement, in particular for those used in food packaging industry. To contribute to the understanding of the transport phenomena in polylactide (PLA), this study was focused on the adjustment of PLA microstructure modulation related to its gas (oxygen, helium) and organic compounds (ethyl esters, fluorescent molecules) barrier properties. The microstructure was modulated i) by adding plasticizers (ATBC, PEG), ii) by crystallizing according to 3 processes, thermal treatment, organic compounds induced crystallization and biaxially orientation. These approaches, respectively enabled to vary, the ratio of amorphous phase and crystalline phase, free volume fraction into amorphous phase and the crystalline structure. The increase in crystallinity degree, by annealing from cold state, did not result in a systematic and significant decrease of the gas molecules transport coefficient (oxygen, helium). Two main hypotheses were formulated to explain this behaviour: de-densification of amorphous phase and the presence of a mobile and a rigid amorphous phase. The influence of biaxially orientation on gas barrier properties was strongly limited even at the highest stretching ratio (4×4). Nevertheless several morphologies can be formed thanks to this technique.The transport coefficient study by several methods (sorption, permeation and diffusion by solid/solid contact) highlighted a scale law with the fluorescent molecules and allowed to a first estimation of the α coefficient. Thanks to Electronic Spin Resonance approach, phase separation of plasticized systems by ATBC and PEG were highlighted. This method could be one of the means to probe the local heterogeneities and the micro-structural changes related to the interaction of permeating molecules and polymer matrix during transport.
|
516 |
Akutní neurozánětlivá reakce po fokální mozkové ischémii / Acute neuroinflammatory reaction after focal cerebral ischemiaAmbrož, Ondřej January 2016 (has links)
Title: Acute neuroinflammatory reaction after focal cerebral ischemia Aim: The aim of this thesis is to evaluate neuroinflammatory response after focal cerebral cortical ischemia. Also, familiarizing with the method of displaying damage of blood brain barriers, neurons and the possibility of detection of microglia cells as a marker of acute neuroinflammatory processes. Methodology: This is an experimental study. We brought about cortical cerebral ischemia in rats using an application of photosensitive dye "bengal red," and a green laser. Two animals were were given the additional application of "Evans blue" in order to visualize the defects of the blood brain barrier. The animals were returned to their cage for the time needed before they were induced terminal anesthesia. This was followed by the process of brain perfusion, slicing the brain in sections 50 µm thick and then applied these sections onto slides. Sections with applied EB were immediately analyzed under the microscope. Sections to illustrate neuronal death were immunohistochemically stained via the Nissl method. Sections visualizing microglial activity were stained using CD11b antibody. Results: Following the induction of focal ischemia there occured brain tissue damage. In the vicinity of lesion there is degeneration of neurons and...
|
517 |
Subsurface controls on mainland marsh shoreline response during barrier island transgressive submergenceEllison, Mary 04 August 2011 (has links)
Many recent studies have sought to understand the response of barrier islands and their attendant marshes to sea level rise. The Mississippi River delta plain, specifically the Chandeleur Islands and associated interior wetlands in eastern Louisiana, serves as an excellent natural laboratory for studying these responses. This region is presently undergoing the highest rates of shoreline erosion (> 15 m yr -1) in North America as wetlands are converted to open water in a regime of subsidence-driven rapid relative sea-level rise (~1 cm yr-1). Three conceptual models were developed based on the geomorphic relationships observed in the marsh that describe and predict shoreline processes as the Chandeleur Islands continue to disintegrate and submerge. These models indicate that shells are the dominant shoreline-forming material in the marsh due to the lack of sand-rich strata in the subsurface of the marsh.
|
518 |
Response of barrier island fish assemblages to impacts from multiple hurricanes: assessing resilience of Chandeleur Island fish assemblages to hurricanes Ivan (2004) and Katrina (2005)Ellinwood, Mark Chad 19 December 2008 (has links)
Hurricanes can temporarily disrupt seasonal patterns of fish assemblage change or result in permanent changes in fish assemblages. I studied the effects of two hurricanes on fish assemblages at the Chandeleur Islands and the possible influence that storm-generated tidal channels may have on the composition of local fish assemblages. I also compared recently collected data to historic ichthyofaunal survey data collected over thirty years ago at the Chandeleur Islands. Near shore fish assemblages changed the most after hurricanes but changes in species composition were primarily due to increases in abundance and diversity. During July 2007 there was no significant difference between fish assemblages in channel and seagrass habitats, although significant differences among wash-over channels existed. Loss of habitat and the increased intensity and frequency of recent storms may explain why current fish assemblages at the Chandeleur Islands are less diverse (as measured by taxonomic distinctness) than assemblages collected during 1969-1971.
|
519 |
Experimental and Computational Investigation of Thermal-Flow Characteristics of Gas Turbine Reverse-Flow CombustorWang, Liang 05 August 2010 (has links)
Reverse-flow combustors have been used in heavy land-based gas turbines for many decades. A sheath is typically installed to provide cooling at an expense of large pressure losses, through small jet impingement cooling and strong forced convention channel flow. With the modern advancement in metallurgy and thermal-barrier coating technologies, it may become possible to remove this sheath to recover the pressure losses without melting the combustor chamber. However, without the sheath, the flow inside the dump diffuser may exert nonuniform cooling on the combustion chamber. Therefore, the objective of this project is to investigate the flow pattern, pressure drop, and heat transfer in the dump-diffuser reverse-flow combustor with and without sheath to determine if the sheath could be removed. The investigation was conducted through both experimental and computational simulation. The results show that 3.3% pressure losses could be recovered and the highest wall temperature will increase 18% without the sheath.
|
520 |
Geomorphologic evolution of a rapidly deteriorating barrier island system with multiple sediment sources: Eastern Isles Dernieres, Louisiana, 1887 to 2006Kirkland, Benjamin T 15 December 2012 (has links)
Trinity, East, and Wine Islands make up the eastern half of the Isles Dernieres barrier arc in south-central Louisiana. Formed following the abandonment of the Lafourche delta complex, subsidence and storm erosion have led to rapid deterioration of the system. Since 1887, the land area of the islands has decreased seventy-seven percent, and the gulf shoreline has retreated landward more than a kilometer. Wave ravinement on the shoreface of the islands is responsible for the most sediment loss; liberated sediment travels longshore to tidal inlets. The dominant ebb tidal currents then transport the sediment to where it is deposited in ebb tidal deltas or carried to the west, out of the system. A large lobe of sediment bypassing Cat Island Pass is entering the system from the eastern lower shoreface, which helps replace some of the sediment lost through wave ravinement to the upper shoreface.
|
Page generated in 0.0718 seconds