• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The evolution seen from the angle of quantum physics

Drechsel, Dieter 14 December 2021 (has links)
In previous publications [1,7] the author described the base rivalry in monotonous DNA sequences and their effect on the DNA repair mechanism. According to this theory, many base building blocks compete for the occupancy of the newly released base site in the replication of monotonous DNA sequences in the elongation phase. This gives them more and more kinetic energy from replication position k to next position. Thus, there is a probability that a tautomeric base pair is formed behind the end of the monotonic sequence because of the tunneling effect. After its replication a different, irreparable base pair develops from the tautomeric base pair, when the rivalry - energy leads to a very strong hydrogen bond. This happens, however, by chance. In the following, we will describe the 3 phenomena: The tunnel probability (section 2), the probability for coming up of a high – energy – base building block (Elitist, section 3),and the combination of both phenomena (section 4). The result of these calculations is the equation (28). It is remarkable that follows from these calculations that the length of the monotonous sequences, and also the length of DNA increases itself in the course of evolution (section 5). (Read up all detailed computations in [7].) [... from introduction]
2

The evolution seen from the angle of quantum physics

Drechsel, Dieter 22 February 2021 (has links)
In previous publications [1,7] the author described the base rivalry in monotonous DNA sequences and their effect on the DNA repair mechanism. According to this theory, many base building blocks compete for the occupancy of the newly released base site in the replication of monotonous DNA sequences in the elongation phase. This gives them more and more kinetic energy from replication position to next position. Thus, there is a probability that a tautomeric base pair is formed behind the end of the monotonic sequence because of the tunneling effect. After its replication a different, irreparable base pair develops from the tautomeric base pair, when the rivalry - energy leads to a very strong hydrogen bond. This happens, however, by chance. In the following, we will describe the 3 phenomena: The tunnel probability (section 2), the probability for coming up of a high – energy – base building block (Elitist, section 3),and the combination of both phenomena (section 4). The result of these calculations is the equation (28). It is remarkable that follows from these calculations that the length of the monotonous sequences, and also the length of DNA increases itself in the course of evolution (section 5). (Read up all detailed computations in [7].) [... from introduction]
3

Evolution Physics

Drechsel, Dieter 02 May 2018 (has links)
In a process called 'base rivalry', irreparable mutations are provoked in the replication of monotonous sequences, which depend on the cell temperature, the cell viscosity and monotonous sequence length. This explains the very long monotonous sequences and very long DNAs that occur over long evolutionary epochs. Presumably, base rivalry (with tautomerism or too low cell viscosity) also provokes the formation of tumors and the emergence of dangerous viral mutations.
4

Physikalische Berechnungen zu Fragen der Tumoren, der Mutationen und der Evolution

Drechsel, Dieter 07 March 2012 (has links)
Bei der Replikation monotoner Sequenzen tritt theoretisch ein Vorgang auf, den wir als „Basenkonkurrenz“ bezeichnen: Da sich an jeder Replikations-Stelle mehrere Basenbausteine bewerben, aber immer nur einer benötigt wird, bewerben sich die übrig gebliebenen Bausteine an den jeweils nächsten Replikations - Positionen und erlangen wegen der fortwährenden Beschleunigung durch elektrostatische Anziehung immer größere kinetische Energien. Das führt dazu, dass an einer bestimmten Stelle der replizierenden monotonen Sequenz der eine Partner der Wasserstoffbrückenbindung ein hohes Energieniveau erreicht. Es wird berechnet, dass sich dadurch kurzzeitig eine sehr hohe Bindungsenergie zwischen den beiden Partnern der Wasserstoffbrückenbindung einstellt, wodurch der in dieser kurzen Zeitspanne wirkende DNA-Reparaturmechanismus unterdrückt wird. Die Auswirkungen der hohen Basenkonkurrenz – Energien werden berechnet (hohe Bindungsenergien der Wasserstoffbrückenbindungen, Tunnelvorgänge, irreparable Mutationen). Die Folgen dieser Erscheinung sind Tumorbildung, Alterung, Veränderung der DNA – Struktur, Beeinflussung der Evolution, worauf im Einzelnen eingegangen wird. Es zeigt sich, dass die negativen Auswirkungen der Basenkonkurrenz vorwiegend bei zu niedriger Viskosität des Zellplasmas auftreten.:1. Basenkonkurrenz 3 1.1. Basenkonkurrenz während des Replikationsvorganges 3 1.2. Der Einfluss der Viskosität des Zytoplasmas 6 1.3. Berechnung der Energiestufen Tk 7 2. Auswirkungen der Basenkonkurrenz auf tautomere Basenpaare 8 2.1. Berechnung der Bindeenergie der Wasserstoffbrückenbindung 8 2.1.1. Normierung der Wellenfunktionen und 12 2.1.1.1.Wasserstoff im Grundzustand (1s) 12 2.1.1.2. Wasserstoff im angeregten Zustand (2p) 13 2.1.1.3. Akzeptor im Grundzustand 13 2.1.2. Darstellung der Energieflächen 14 2.1.3. Berechnung der Bindeenergie, wenn beide Partner sich im Grundzustand befinden 15 2.1.4. Berechnung der Bindeenergie, wenn sich der Acceptor im Grundzustand und der Wasserstoff im angeregten Zustand 2p befindet 18 2.2. Falschpaarung durch Basenkonkurrenz bei tautomeren Basenpaaren 20 2.3. Abklingzeit der Basenkonkurrenz – Energie 21 2.4. Entstehung, Vererbung und Löschung eines „Gedächtnisses“ vorgeschädigter DNA 22 2.4.1. Entstehung 22 2.4.2. Vererbung 22 2.4.3. Löschung 22 3. Auswirkung der Basenkonkurrenz auf die DNA – Struktur 23 4. Tunnelvorgänge in biologischen Wasserstoffbrückenbindungen 26 4.1. Berechnung der Tunnel – Wahrscheinlichkeit 27 4.1.1. Ab–initio–Berechnung der Tunnel –Wahrscheinlichkeit 27 4.1.2. Der Protonenstrom 33 4.1.3. Der Einfluss der Temperatur 36 4.1.4. Berechnung der Tunnel – Wahrscheinlichkeit in Wasserstoffbrückenbindungen bei parabelförmigem Potenzialverlauf. 37 4.1.5. Berechnung des Mindestabstandes zwischen der Gesamtenergie E und dem Potenzialwall der Wasserstoffbrückenbindung 43 4.1.6. Berechnung der Größe 16/R 44 4.1.7. Die Änderung der Tunnel – Wahrscheinlichkeit durch Temperatur – und Energieänderung. 46 5. Zufällige Änderung der Basenverteilung der DNA während der Replikation 49 5.1. Aufzählung aller möglichen Verteilungen 49 5.2. Aufzählung aller günstigen Verteilungen und die Chance des Auftretens hoher Basenkonkurrenz – Energie 51 6. Die Total – Wahrscheinlichkeit der durch Basenkonkurrenz verursachten Mutation 53 7. Interpretation der Gleichung (93) 55 8. Evolution und Physik 58 9. Mutation und Physik innerhalb kleinerer Zeiträume 58 10. Zusammenfassung 59 Literaturverzeichnis 60
5

Physikalische Berechnungen zu Fragen der Tumoren, der Mutationen und der Evolution / Physical calculations to questions of the tumors, the mutations and the evolution

Drechsel, Dieter 07 March 2012 (has links) (PDF)
Bei der Replikation monotoner Sequenzen tritt theoretisch ein Vorgang auf, den wir als „Basenkonkurrenz“ bezeichnen: Da sich an jeder Replikations-Stelle mehrere Basenbausteine bewerben, aber immer nur einer benötigt wird, bewerben sich die übrig gebliebenen Bausteine an den jeweils nächsten Replikations - Positionen und erlangen wegen der fortwährenden Beschleunigung durch elektrostatische Anziehung immer größere kinetische Energien. Das führt dazu, dass an einer bestimmten Stelle der replizierenden monotonen Sequenz der eine Partner der Wasserstoffbrückenbindung ein hohes Energieniveau erreicht. Es wird berechnet, dass sich dadurch kurzzeitig eine sehr hohe Bindungsenergie zwischen den beiden Partnern der Wasserstoffbrückenbindung einstellt, wodurch der in dieser kurzen Zeitspanne wirkende DNA-Reparaturmechanismus unterdrückt wird. Die Auswirkungen der hohen Basenkonkurrenz – Energien werden berechnet (hohe Bindungsenergien der Wasserstoffbrückenbindungen, Tunnelvorgänge, irreparable Mutationen). Die Folgen dieser Erscheinung sind Tumorbildung, Alterung, Veränderung der DNA – Struktur, Beeinflussung der Evolution, worauf im Einzelnen eingegangen wird. Es zeigt sich, dass die negativen Auswirkungen der Basenkonkurrenz vorwiegend bei zu niedriger Viskosität des Zellplasmas auftreten.

Page generated in 0.059 seconds