Spelling suggestions: "subject:"basis fibroblast growth factor (bFGF)""
1 |
Purification and Characterization of Proteoglycan from Bovine Aortic Endothelial Cells Conditioned Media, and its Interaction with Basic Fibroblast Growth Factor (bFGF)Wang, Ningling III 22 September 1997 (has links)
Cultured bovine aortic endothelial (BAE) cells were found to synthesize and secrete heparan sulfate proteoglycans (HSPG), which bound basic fibrobalst growth factor (bFGF). bFGF is a known mitogen for vascular smooth muscle cells, and is indicated to have a role in some proliferative vascular disorders. In the present study, we have purified proteoglycans from BAE cells conditioned media (BAE PG), and further separated the PG into two fractions, PG-I and PG-II, by ion exchange chromatography on a Q-Sepharose column using a linear salt gradient (0.15 M to 1.2 M). PG-I and PG-II elute at 0.85M salt and 0.1M salt respectively. BAE PG is primarily composed of heparan sulfate, which is accessible to the digestion of Heparinase I/III and nitrous acid treatment; and a small amount of chondroitin sulfate, which can be digested by Chondroitinase ABC. Gel filtration chromatography (Sepharose CL-2B and CL-4B columns) showed that BAE PG consisted of two different sized peaks, and had an average molecular weight of approximately 5 x 10⁵ Da. SDS-PAGE with silver staining indicated that BAE PG had two core proteins with estimated sizes of 300kDa and 320kDa, which corresponded to the core protein of PG-I and PG-II respectively. Western blotting with anti-perlecan primary antibody recognized the core proteins of BAE PG. Size exclusion chromatography (Sepharose CL-6B column) following β-elimination showed that BAE PG had GAG chains with an estimated size less than 2 x 10⁵ Da.
A protocol to investigate the cell free binding of bFGF with purified BAE PG was established using the BioRad Bio-Dot apparatus - the cationic filtration assay (CAFAS). Using a simple monovalent binding model, we obtained values for the equilibrium dissociation constant, K<sub>D</sub>, of (1.6 ± 0.8) x 10⁻¹⁰ M; the dissociation rate constant, k<sub>r</sub>, of 0.01 min⁻¹; the association rate constant, k<sub>f</sub>, of 6.2 x 10⁷ M⁻¹min⁻¹ and the total binding sites of the proteoglycan, R<sub>T</sub>, of 0.1~0.2 (# of site)/(molecule of PG). The comparison of experimental data with model predictions indicates that when the number of binding sites provided by the PG is similar or greater than that of bFGF, the monovalent binding model is valid. When the number of binding sites is less than that of bFGF, one possibility is that the binding might not be the described simple monovalent reaction, and bFGF might bind to the PG as dimers or oligomers. In addition, a model is proposed for BAE PG, in which 5 ~ 10 BAE PG molecules form a high affinity binding site for bFGF. Experimentally we find that exogenous heparan sulfate competes with BAE PG for binding with bFGF, while chondroitin sulfate seems to facilitate the binding. This result may be a useful consideration when we want to design possible pharmaceutical compounds. / Master of Science
|
2 |
Collagenous Colitis : A Study of Inflammatory Mediators and Growth Factors Based on Segmental Colorectal Perfusion and ImmunohistochemistryTaha, Yesuf Ahmed January 2006 (has links)
<p>Collagenous colitis (CC) is an inflammatory bowel disease of unknown etiology. It is characterized by watery diarrhoea without blood, normal endoscopic findings but microscopically colonic mucosal inflammation and increased thickness of the subepithelial collagen band, the latter being a pathognomonic sign. The inflammatory infiltrate in the mucosa of CC contains lymphocytes, plasma cells, eosinophils, mast cells but few neutrophils. The pathophysiological roles of the thickened collagen band and the inflammatory infiltrate in CC are not fully understood. The aims of the present study were to develop a colonoscope based segmental perfusions technique and to analyze local intestinal secretion of inflammatory mediators: Eosinophilic Cationic Protein (ECP), Myeloperoxidase (MPO), Basic Fibroblast Growth Factor (bFGF), Vascular Endothelial Growth Factor (VEGF) and permeability marker albumin in CC patients without medication and also during steroid treatment. Furthermore, the colonic mucosal distribution of bFGF and VEGF were studied by immunohistochemical methods.</p><p>Colonoscope-based segmental perfusions were performed in totally 22 patients and the success rate was 76% in both rectal and descending colon segments. The analysis showed high intraluminal concentrations of ECP, bFGF, VEGF and albumin in ten CC patients compared to 10 control patients. Further, albumin had correlations with ECP and VEGF. However, elevated concentrations of MPO, an important feature of ulcerative colitis, were only observed in a few CC patients. Immunohistochemistry visualized bFGF and VEGF in the colonic epithelium but also deeper in the lamina propria. The steroid treatment study (including 12 patients) showed that the perfusate concentrations of ECP, bFGF and VEGF declined significantly in parallel with decreased frequency of diarrhoea. </p><p>In conclusion, a safe colonoscope-based, segmental perfusion technique was developed and perfusions of the rectum and descending colon were performed. CC patients had elevated perfusate concentrations of ECP, VEGF and bFGF. There was a marked reduction of these mediators during steroid treatment supporting the hypothesis that these inflammatory mediators separately or synergistically participate in the inflammatory reaction and tissue remodelling in CC patients. The finding of correlations between albumin and ECP or VEGF implies that permeability is increased in CC and may be triggered by ECP and VEGF. </p>
|
3 |
Collagenous Colitis : A Study of Inflammatory Mediators and Growth Factors Based on Segmental Colorectal Perfusion and ImmunohistochemistryTaha, Yesuf Ahmed January 2006 (has links)
Collagenous colitis (CC) is an inflammatory bowel disease of unknown etiology. It is characterized by watery diarrhoea without blood, normal endoscopic findings but microscopically colonic mucosal inflammation and increased thickness of the subepithelial collagen band, the latter being a pathognomonic sign. The inflammatory infiltrate in the mucosa of CC contains lymphocytes, plasma cells, eosinophils, mast cells but few neutrophils. The pathophysiological roles of the thickened collagen band and the inflammatory infiltrate in CC are not fully understood. The aims of the present study were to develop a colonoscope based segmental perfusions technique and to analyze local intestinal secretion of inflammatory mediators: Eosinophilic Cationic Protein (ECP), Myeloperoxidase (MPO), Basic Fibroblast Growth Factor (bFGF), Vascular Endothelial Growth Factor (VEGF) and permeability marker albumin in CC patients without medication and also during steroid treatment. Furthermore, the colonic mucosal distribution of bFGF and VEGF were studied by immunohistochemical methods. Colonoscope-based segmental perfusions were performed in totally 22 patients and the success rate was 76% in both rectal and descending colon segments. The analysis showed high intraluminal concentrations of ECP, bFGF, VEGF and albumin in ten CC patients compared to 10 control patients. Further, albumin had correlations with ECP and VEGF. However, elevated concentrations of MPO, an important feature of ulcerative colitis, were only observed in a few CC patients. Immunohistochemistry visualized bFGF and VEGF in the colonic epithelium but also deeper in the lamina propria. The steroid treatment study (including 12 patients) showed that the perfusate concentrations of ECP, bFGF and VEGF declined significantly in parallel with decreased frequency of diarrhoea. In conclusion, a safe colonoscope-based, segmental perfusion technique was developed and perfusions of the rectum and descending colon were performed. CC patients had elevated perfusate concentrations of ECP, VEGF and bFGF. There was a marked reduction of these mediators during steroid treatment supporting the hypothesis that these inflammatory mediators separately or synergistically participate in the inflammatory reaction and tissue remodelling in CC patients. The finding of correlations between albumin and ECP or VEGF implies that permeability is increased in CC and may be triggered by ECP and VEGF.
|
Page generated in 0.1095 seconds