1 |
Application of Machine Learning Algorithm to Forecast Load and Development of a Battery Control Algorithm to Optimize PV System Performance in Phoenix, ArizonaJanuary 2018 (has links)
abstract: The students of Arizona State University, under the mentorship of Dr George Karady, have been collaborating with Salt River Project (SRP), a major power utility in the state of Arizona, trying to study and optimize a battery-supported grid-tied rooftop Photovoltaic (PV) system, sold by a commercial vendor. SRP believes this system has the potential to satisfy the needs of its customers, who opt for utilizing solar power to partially satisfy their power needs.
An important part of this elaborate project is the development of a new load forecasting algorithm and a better control strategy for the optimized utilization of the storage system. The built-in algorithm of this commercial unit uses simple forecasting and battery control strategies. With the recent improvement in Machine Learning (ML) techniques, development of a more sophisticated model of the problem in hand was possible. This research is aimed at achieving the goal by utilizing the appropriate ML techniques to better model the problem, which will essentially result in a better solution. In this research, a set of six unique features are used to model the load forecasting problem and different ML algorithms are simulated on the developed model. A similar approach is taken to solve the PV prediction problem. Finally, a very effective battery control strategy is built (utilizing the results of the load and PV forecasting), with the aim of ensuring a reduction in the amount of energy consumed from the grid during the “on-peak” hours. Apart from the reduction in the energy consumption, this battery control algorithm decelerates the “cycling aging” or the aging of the battery owing to the charge/dis-charges cycles endured by selectively charging/dis-charging the battery based on need.
ii
The results of this proposed strategy are verified using a hardware implementation (the PV system was coupled with a custom-built load bank and this setup was used to simulate a house). The results pertaining to the performances of the built-in algorithm and the ML algorithm are compared and the economic analysis is performed. The findings of this research have in the process of being published in a reputed journal. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018
|
2 |
Feasibility study of battery storage installed with solar PV in an energy efficient houseFASCÌ, MARIA LETIZIA January 2017 (has links)
The aim of this project is to nd the optimal size battery for an already installed PV system in a family house in Southern Sweden. First, the existing system is modelled and validated. Then a new model including a battery is built. In this model it is assumed that the aim of the battery is to maximize the self-consumption of the house. A sensitivity analysis is performed in order to study the inuence of the battery capacity on the electricity uxes between the house and the grid. The protability of the project is then investigated, considering the current tari schemes for thehouse and for the "average" Swedish house. Eventually the possibility of applying price-dependent control strategies to the battery is investigated. The primary conclusion is that a battery installation is not protable for the studied house whether the incentives provided by the Swedish government are considered or not. Yet a subsidized installation would be protable for a house subject to the average Swedish electricity price. Another conclusion is that the current hourly volatility in the electricity price is not high enough to make reasonable the use of price dependent battery control strategies. Their use would lead to better economical performance, with respect to the simplest battery control strategy, in case of increased volatility. / Malet av det har projektet ar att hitta batteri med den basta storleken for en existerande solcellssystem i en villa i Sodra Sverige. Forst, det existerande systemet modelleras och valideras. Sedan byggs en ny modell som innehaller ett batteri. I den har modellen antas att malet av batteriet ar att maximera sjalvkonsumption av villan. En kanslighetsanalys utfors for att studera inverkan av batteri kapacitet pa el ussmedel mellan villan och natet. Darefter, lonsamheten av projektetet unders oktes, med tanke pa den bentliga tarisystem for den utforskade villan och den "genomsnitt" Svenska villa. Slutligen, mojligheten att tillampa prisberoende batterikontrollstrategier undersoks. Den primara slutsats ar att en batteriinstallation ar inte lonsam for den studerade villa, med eller utan bidrag. Anda en subventionerad installation skulle vara lonsam for ett hus som utsatts for genomsnitt svenska elpriset. En annan slutsats ar att den nuvarande volatilitet i elpriset ar inte tillrackligt hog for att gora lamplig den anvandning av prisberoende batterikontrollstrategier. Deras anvandning skulle leda till battre ekonomisk prestanda, med avseende pa den enklaste batteristrategi, om prisvolatilet okningar.
|
3 |
Aging sensitive battery controlAndersson, Malin January 2022 (has links)
The battery is a component with significant impact on both the cost and environmental footprint of a full electric vehicle (EV). Consequently, there is a strong motivation to maximize its degree of utilization. Usage limits are enforced by the battery management system (BMS) to ensure safe operation and limit battery degradation. The limits tend to be conservative to account for uncertainty in battery state estimation as well as changes in the battery's characteristics due to aging. To improve the utilization degree, aging sensitive battery control is necessary. This refers to control that a) adjusts during the battery's life based on its state and b) balances the trade-off between utilization and degradation according to requirements from the specific application. In state-of-the-art battery installations, only three signals are measured; current, voltage and temperature. However, the battery's behaviour is governed by other states that must be estimated such as its state-of-charge (SOC) or local concentrations and potentials. The BMS therefore relies on models to estimate states and to perform control actions. In order to realize points a) and b), the models that are used for state estimation and control must be updated onboard. An updated model can also serve the purpose of diagnosing the battery, since it reflects the changing properties of an aging battery. This thesis investigates identification of physics-based and empirical battery models from operational EV data. The work is divided into three main studies. 1) A global sensitivity analysis was performed on the parameters of a high-order physics-based model. Measured current profiles from real EV:s were used as input and the parameters' impact on both modelled cell voltage and other internal states was assessed. The study revealed that in order to excite all model parameters, an input with high current rates, large SOC span and longer charge or discharge periods was required. This was only present in the data set from an electric truck with few battery packs. Data sets from vehicles with more packs (electric bus) and limited SOC operating window (plug-in hybrid truck) excited fewer model parameters. 2) Empirical linear-parameter-varying (LPV) dynamic models were identified on driving data. Model parameters were formulated as functions of the measured temperature, current magnitude and estimated open circuit voltage (OCV). To handle the time-scale differences in battery voltage response, continuous-time system identification was employed. We concluded that the proposed models had superior predictive abilities compared to discrete and time-invariant counterparts. 3) Instead of using driving data to parametrize models, we also investigated the possibility to design the charging current in order to increase its information content about model parameters. This was formulated as an optimal control problem with charging speed and information content as objectives. To also take battery degradation into account, constraints on polarization was included. The results showed that parameter information can be increased without significant increase in charge time nor aging related stress. / Elekriska fordon utgör en allt större andel av världens fordonsflotta. Batteriet är en komponent med betydande påverkan både på fordonets kostnadoch dess miljö- och klimatpåverkan. Det är därför viktigt att försöka maximera batteriets utnytjandegrad. Användargränser upprätthålls av batterietsstyrsystem, såkallad BMS, för att garantera säker drift samt för att begränsabatteriets åldrande. Användargränserna tenderar att vara konservativa för attta höjd för osäkerhet i tillståndsestimeringen samt batteriets förändrade egenskaper under dess livstid. För att utöka utnyttjandegraden är ålderskänsligstyrning nödvändig. Med detta avses styrning som a) justeras under batterietslivstid och b) balancerar utnyttjande och prestanda på ett sätt som passar enspecifik applikation. Ombord på fordon mäts typiskt tre signaler; ström, spänning och temperatur. Batteriets beteende bestäms dock av andra tillstånd som måste estimeras, såsom dess laddnivåeller lokala koncentrationer och potentialer. BMS:enförlitar sig därför på modeller för att estimera interna tillstånd och utföra styrning. För att uppfylla punkterna a) och b) måste modellerna som användsuppdateras ombord i takt med att batteriet åldras. En uppdaterad modellkan också fungera som ett diagnostiskt verktyg eftersom det speglar batteriets förändrade egenskaper. Den här avhandlingen undersöker identifieringav fysikbaserade och empiriska modeller från kördata. Arbetet delas in i treseparata studier. 1) En global känslighetsanalys utfördes på parametrarna i en fysikbaseradmodell av hög ordning. Som inputsignal användes uppmätt ström från riktigaelfordon i drift. Parametrarnas effekt på både cellspänning och interna batteritillstånd analyserades. Studien visade att alla modellparametrar exciteradesav strömmen från ett helelektriskt fordon. Anledningen var att batteriernaanvändes inom ett brett SOC spann samt att den dragna strömmen var stor.I fordon med snävare SOC span och lägre strömmar var inte alla parametrarkänsliga. 2) Dynamiska parametervarierande modeller formulerades och identifierades från kördata. Den uppmätta temperaturen, samt strömmens storlekoch den estimerade tomgångsspänningen (OCV) användes till parameterberoenden. För att hantera skillnader i tidsskala mellan spänningssvarets olikakomponenter användes systemidentifiering i kontinuerlig tid. Vi kunde draslutsatsen att de föreslagna modellerna var överlägsna motsvarande diskretaoch konstanta modeller. 3) Istället för att använda kördata för att parametrisera modeller undersökte vi också möjligheten att designa laddförloppet för att öka dess informationsinnheåll. Detta formulerades som ett optimeringsproblem med laddtidoch informationsinnehåll i kostnadsfunktionen. För att även ta batteriets åldrande i beaktning, ansattses bivillkor på polariseringsspänningen. / <p>QC 20220516</p>
|
Page generated in 0.0846 seconds