• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 14
  • 14
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charge Equalization of Batteries in Serial Power Modules

Hong, Wei 03 August 2010 (has links)
The charge equalization for the battery power source with battery power modules (BPMs) in series is presented in the thesis. The bidirectional power converters in BPMs are able to serve as chargers with buck conversion during the charging stage. Even though connected in series, all modules can substantially be operated individually, retaining the advantages of independent operation, such as flexible control, easy protection, simple maintenance, and favorable battery power management. Investigation results indicate that automatic charge equalization is possible for the discontinuous conduction mode (DCM) operation. On the other hand, charge equalization can be achieved much faster by individually regulating the charging currents at the continuous conduction mode (CCM). According to the analyzed results, an equalization strategy is proposed to solve the charge imbalance problem by scheduling the individual battery current. Experiments are carried out to demonstrate the effectiveness of charge equalization.
2

Configuration and Analysis of Arrayed Boost-Type Battery Power Modules

Jhan, Jia-fu 06 August 2010 (has links)
This thesis studies the operating characteristics of the boost type battery power modules (BPMs) with series and parallel configurations. Under different operating conditions, the BPMs can be operated at the continuous conduction mode (CCM), the discontinuous conduction mode (DCM), or the hybrid mode with a combination of CCM and DCM. The current distribution and balance discharging among BPMs with different configurations are analyzed in detail. Experiments are carried out to demonstrate the analysis results. Finally, a circuit configuration with arrayed BPMs is proposed for adaptable management and maintenance of a battery power system.
3

Balanced Discharging for Serial Battery Power Modules

Yu, Li-ren 28 August 2012 (has links)
This thesis investigates the discharging behavior of serial boost-type battery power modules (BPMs). Even though the BPMs are connected in series to cope with a higher output voltage, all batteries in the BPMs can substantially be operated individually so that can realize the balanced discharging control strategy. By which, the battery currents are scheduled in accordance with their state-of-charges (SOCs).A battery power system formed by 10 boost-type BPMs is built, in which a micro controller is used for detecting the loaded voltages, estimating the SOCs, and controlling the duty ratios of the power converters. Experimental results demonstrate the balanced discharging capability of the serial BPMs. In addition, fault tolerance mechanism is introduced to isolate fault or exhausted batteries and keep the system working with a reduced load.
4

Operation of Battery Power Modules with Serial Connection

Hu, Jin-shin 20 July 2009 (has links)
This thesis presents a novel configuration of battery power by the outputs with serial connection of battery power modules (BPMs) for high voltage level loads. As compared to the conventional application of series-connected battery bank, this configuration operates the BPMs individually, and thus has the advantages of flexible control, convenient maintenance, and easily favorable battery management. The associated converter is equipped to a single battery pack, so that has lower component stresses leading to a higher circuit efficiency. The operation and the design of a lead-acid battery power with series boost-typed BPMs are illustrated. The operation and the design of the converter are illustrated. The control of the power converters is accomplished by a complex programmable logic device (CPLD). To improve the converter efficiency, the technique of synchronous rectification is introduced. For the BPMs designed for discontinuous conduction mode (DCM) operation, charge equalization can be automatically achieved under the same duty-ratio, but is adequate only for batteries with a small difference. On the other hand, charge equalization for the BPMs with continuous conduction mode (CCM) can easily be accomplished by regulating the duty-ratios of the converters.
5

Support for Cell Broadcast as Global Emergency Alert System

Axelsson, Karin, Novak, Cynthia January 2007 (has links)
<p>Cell Broadcast (CB) is a possible technical realisation of a global emergency alert system. It is a technique used for sending short text messages to all mobile stations (MSs) in a defined geographical area. An potential effect of using CB is the increase in battery consumption of the MS due to the fact that an extra channel has to be used to make the service available even when the network is otherwise congested. Another part of the service which leads to a potential problem is making CB messages available in different languages. Investigating these problems is the objective of this thesis and the studies it includes. During the first part of the thesis, we measured the battery consumption of MSs in different modes of operation in order to analyse how CB affects the amount of current drained. The tests showed that battery consumption increased only slightly when CB messages were being received at the MS. Although some of the results can be, and are, discussed, we believe that CB would have a small effect on the power consumption of an MS, particularly in a context where it would be used for emergency warning messages only. This mentioned, it would however be wishful to confirm the conclusions further through the realisation of long-term testing. The second part of the thesis deals with the investigation of the MSs’ support for CB messages with different coding schemes. Based on the investigation’s result, we have come to the conclusion that in the long term the usage of different coding schemes on the same channel is preferred. However, the usage of one, global, emergency channel is hard to realise since that requires a standardisation between all countries. In our opinion this may be achieved first in the long run and until then, the usage of separate channels seems to be necessary.</p>
6

Design of a Control Strategy for a Fuel Cell/Battery Hybrid Power Supply

Smith, Richard C. 14 January 2010 (has links)
The purpose of this thesis is to design hardware and a control strategy for a fuel cell/battery hybrid power supply. Modern fuel cell/battery hybrid power supplies can have 2 DC/DC converters: one converter for the battery and one for the fuel cell. The hardware for the power supply proposed in this thesis consists of a single DC/DC buck converter at the output terminals of the fuel cell. The battery does not have a DC/DC converter, and it is therefore passive in the system. The use of one single converter is attractive, because it reduces the cost of this power supply. This thesis proposes a method of controlling the fuel cell's DC/DC buck converter to act as a current source instead of a voltage source. This thesis will explain why using the fuel cell's buck converter to act as a current source is most appropriate. The proposed design techniques for the buck converter are also based on stiff systems theory. Combining a fuel cell and a battery in one power supply allows exploitation of the advantages of both devices and undermines their disadvantages. The fuel cell has a slow dynamic response time, and the battery has a fast dynamic response time to fluctuations in a load. A fuel cell has high energy density, and a battery has high power density. And the performance of the hybrid power supply exploits these advantages of the fuel cell and the battery. The controller designed in this thesis allows the fuel cell to operate in its most efficient region: even under dynamic load conditions. The passive battery inherits all load dynamic behavior, and it is therefore used for peaking power delivery, while the fuel cell delivers base or average power. Simulations will be provided using MATLAB/Simulink based models. And the results conclude that one can successfully control a hybrid fuel cell/battery power supply that decouples fluctuations in a load from the fuel cell with extremely limited hardware. The results also show that one can successfully control the fuel cell to operate in its most efficient region.
7

Parallel Operation of Battery Power Modules

Ng, Kong-Soon 14 June 2005 (has links)
Operating batteries in parallel is attempted to overcome the problems with conventionally used battery bank, in which batteries are connected in series. The problems and the management with the operation of serial connected batteries are first addressed. The related topics to the parallel configuration are reviewed. Then, the parallel configuration with battery power modules is proposed. The battery power module can be realized with different dc-to-dc converters for different applications. When batteries are charged in parallel, the problem of over-charge can be avoided. With parallel operation, the discharging currents of the batteries are independently controlled but are coordinated to execute a full amount load current. This allows for scheduling the discharging profiles under different operating conditions. As a result, a sophisticated discharging profile can be realized to utilize the available stored energy in batteries. On the other hand, some of the batteries may take rest or be isolated from the system for the detections at a time. This facilitates the estimations of the state of charge (SOC) and the state of health (SOH). Moreover, the completely exhausted or damaged batteries can be isolated from the battery power supply bank without interrupting the system operation. Experiments are carried out on battery power modules with lead-acid batteries incorporating with associated buck-boost converters. The experimental results demonstrate that a more efficient utilization of battery energy can be achieved. On the other hand, a more reasonable management can be done with simple estimation methods of the SOC and the SOH.
8

Configuration and Operation of Battery Power Modules

NG, Kong-Soon 23 July 2009 (has links)
A novel battery power system configured by the battery power modules (BPMs) is proposed. Each BPM consists of a single battery pack or a battery bank equipped with an associated DC/DC converter. The output ports of BPMs can be connected in series for the high voltage applications, or in parallel to cope with a higher power or energy. For a large scale battery power system, a number of BPMs can be arrayed with combination of series and parallel connections to meet the load requirements. These all configurations allow the BPMs be operated individually. Consequently, the discharging currents of the batteries can be independently controlled, but coordinated to provide a full amount of the load current. The performances of BPMs connected in both parallel and series at outputs are analyzed theoretically and discussed from the experimental results. Batteries operating independently do not suffer from charge imbalance, and thus can avoid being over-charged or over-discharged, so that the life cycle can be prolonged. Furthermore, sophisticated discharging profiles such as intermittent currents can be realized to equalize the charges and thus to efficiently utilize the available stored energy in batteries. During the operation period, some of the batteries may take rest or be isolated from the system for the open-circuit measurement, facilitating the estimation of the state-of-charge (SOC) and the evaluation of the state-of-health (SOH). With the benefit of independent operation, the BPMs can be discharged with a scheduled current profile, such as intermittent discharging. The investigation results show that the average current plays the most important role in current discharging. By detecting the battery voltage at the break time, an SOC estimation method based on the dynamically changed open-circuit voltage exhibits an acceptable accuracy in a shorter time with considerations of the previous charging/discharging currents and the depth-of- discharge (DOD). In addition, the coulomb counting method can be enhanced by evaluating the SOH at the exhausted and fully charged states, which can be intended on the independently operated BPMs. Through the experiments that emulate practical operations, the SOC estimation methods are verified on lead-acid batteries and lithium-ion batteries to demonstrate the effectiveness and accuracy.
9

Support for Cell Broadcast as Global Emergency Alert System

Axelsson, Karin, Novak, Cynthia January 2007 (has links)
Cell Broadcast (CB) is a possible technical realisation of a global emergency alert system. It is a technique used for sending short text messages to all mobile stations (MSs) in a defined geographical area. An potential effect of using CB is the increase in battery consumption of the MS due to the fact that an extra channel has to be used to make the service available even when the network is otherwise congested. Another part of the service which leads to a potential problem is making CB messages available in different languages. Investigating these problems is the objective of this thesis and the studies it includes. During the first part of the thesis, we measured the battery consumption of MSs in different modes of operation in order to analyse how CB affects the amount of current drained. The tests showed that battery consumption increased only slightly when CB messages were being received at the MS. Although some of the results can be, and are, discussed, we believe that CB would have a small effect on the power consumption of an MS, particularly in a context where it would be used for emergency warning messages only. This mentioned, it would however be wishful to confirm the conclusions further through the realisation of long-term testing. The second part of the thesis deals with the investigation of the MSs’ support for CB messages with different coding schemes. Based on the investigation’s result, we have come to the conclusion that in the long term the usage of different coding schemes on the same channel is preferred. However, the usage of one, global, emergency channel is hard to realise since that requires a standardisation between all countries. In our opinion this may be achieved first in the long run and until then, the usage of separate channels seems to be necessary.
10

DESIGN OF A HYBRID HYDROGEN-ON-DEMAND AND PRIMARY BATTERY ELECTRIC VEHICLE

Michael J Dziekan (7241471) 14 January 2021 (has links)
<p>In recent years lithium-ion battery electric vehicles and stored hydrogen electric vehicles have been developed to address the ever-present threat of climate change and global warming. These technologies have failed to achieve profitability at costs consumers are willing to bear when purchasing a vehicle. IFBattery, Inc. has developed a unique primary battery chemistry which simultaneously produces both electricity and hydrogen-on-demand while being both low cost and without carbon emissions. In order to determine the feasibility of the IFBattery chemistry for mobile applications, a prototype golf cart was constructed as the first public application of IFBattery technology. The legacy lead acid batteries of the prototype golf cart were replaced with an IFBattery chemistry tuned to primarily produce hydrogen-on-demand with supplemental electricity. Hydrogen produced by the IFBattery was purified and then fed into a hydrogen fuel cell where electricity was produced to power the vehicle. Electricity from the IFBattery was converted to the common voltage of the golf cart and also used to power the vehicle. Validation testing of the IFBattery powered golf cart demonstrated favorable results as an alternative to both lithium-ion battery and stored hydrogen technologies, and displayed potential for future applications.</p>

Page generated in 0.0828 seconds