• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Secondary Life of Automotive Lithium Ion Batteries: An Aging and Economic Analysis

Warner, Nicholas A. 06 August 2013 (has links)
No description available.
2

Exploring EV Battery Secondary Life Business models and Reverse Logistic perspectives

Vu, Felix, Rahic, Melanie January 2019 (has links)
In connection to the increasing awareness of vehicles and its impact on the environment, the interest in the electric vehicle market has shown a significant growth in the recent years. According to forecasts, it is also projected to increase further in the future. These electric vehicles are driven by lithium-ion batteries with an expected service life of 5-15 years depending on different technology generations and design concepts. After the given service life, the battery has lost approximately 20 percent of its capacity and is no longer permitted to be used in its original application area again, out of safety reasons. Although the retired battery pack is not suitable for vehicles, its remaining capacity can still be utilized in other applications. Hence, the term second life has become a common subject in the automotive industry, where companies are trying to find new application areas for the retired electric vehicle battery packs. Common methods regarding second life of electric vehicle batteries are processes such as remanufacturing, repurposing and re-use. These presented second life methods are from a reverse logistics perspective. Second life alternatives enable a better sustainability and reduces the environmental impact by re-using and recycling existing materials.   In this thesis, the authors examined different second life concepts with the same prerequisite, an electric vehicle lithium-ion battery pack with an energy capacity of 20 kWh. The project has been conducted in a company that is one of the leading manufacturers in the heavy-duty industrial vehicle industry, which currently is developing their electric vehicle machines. Several different concepts have been generated and analysed to find the most applicable business model concepts from a second life perspective. The purpose has been to investigate and calculate which of these business model concepts are most feasible from an economic and a reverse logistics perspective. In order to fulfil the purpose, the following research questions have been formulated:   RQ1: Which secondary use business model concepts are feasible for battery packs of electrified machines? RQ2: Out of the above identified concepts, which business model concept is economically feasible and how can its reverse logistic be composed?   In order to answer the research questions, the authors have analysed different cost aspects and forecasts based on existing research and case company data. This is performed to develop the most profitable concepts based on the collected data, where the generated ideas concluded in three final concepts. For these concepts, individual business model canvases were created to illustrate all important parts of the concepts. The thesis resulted in an economic analysis of the three concepts, visualizing function diagrams and comparing them to each other, to identify the most applicable concept for the case company. The remanufacturing concept proved to be the most applicable one, where its associated reverse logistics and recycling process were investigated and determined. In conclusion the thesis can firstly contribute to future research by the created process map that companies can use and apply in their second life process, correlated to the managerial implications. Secondly, the remanufacturing concept can be a potential future investment for the case company, considering all valuable factors that have been analysed throughout the thesis.     Keywords: Battery pack, Battery secondary use, Business model, Reverse logistic, ESS, Remanufacturing, Battery repurposing, re-use, Battery second life economic analysis.
3

Circular Business Models for Electric Vehicle Battery Second Life : Challenges, enablers, and preconditions from an ecosystem perspective

Toorajipour, Reza January 2023 (has links)
Sustainability has become a critical issue due to global warming, scarcity of resources, and the high costs of raw materials. It is vital to reconsider linear business models and value creation processes and transition towards circularity. The growth of the electric vehicles market is promising; however, it comes with a major downside. Soon there will be a considerable number of used batteries without the original capacity and potentially hazardous that cannot go to landfill due to environmental and economic reasons. In this regard, the use of electric vehicle batteries in second life (EVBSL) is suggested as a solution. EVBSL comes with benefits such as the extension of the battery life cycle, extracting value from the remaining capacity of the battery, reduction in the upfront costs of the electric vehicle, and create new revenue streams for the companies. And since various actors are involved in EVBSL, it is essential to study this phenomenon from an ecosystem perspective. Despite the recent focus of researchers on EVBSL, there are several gaps in the current literature on this topic. The first gap concerns the challenges and enablers of implementing circular business models (CBMs) for EVBSL. The second gap concerns the second life operations of electric vehicles (EV). There is a lack of research on the solutions that can guide the ecosystem actors to manage EVBSL-related activities. And the third gap concerns the limited research on the preconditions of circular business model innovation for the EVBSL that focuses on the transition from linear business models to CBMs. Therefore, this thesis aims to develop knowledge of the factors that influence the implementation of CBMs for EVBSL from an ecosystem perspective. This study intends to address these gaps by conducting qualitative research. An exploratory research design has been deemed adequate due to its flexibility and compatibility. This research draws on the existing literature on the second life of EV batteries, and circular business models. In total, 20 interviews and 15 workshops have been conducted covering 15 companies in the EVBSL ecosystem. Purposeful sampling was employed to select the EVBSL ecosystem actors with the aim of covering the key actors such as OEMs, battery manufacturer, recycling companies, remanufacturers, energy utility companies, material supplier for battery parts, construction and housing company, and public transportation companies. The collected data was analyzed via qualitative methods such as thematic analysis.  The results of this study have led to the identification of nine key challenges and seven key enablers. Moreover, two dimensions (i.e., time frame and responsible entity) are identified from the empirical data, through which companies can structurally categorize and work with the identified key challenges and enablers. Based on this, a guiding framework is suggested that could support firms in the EV battery ecosystem to establish and manage various configurations for second-life operations in a series of phases such as firm-level initiation, ecosystem construction, firm-level optimization, and ecosystem orchestration. Finally, the current linear business models (traditional sales of products and services, product maintenance and support, R&D, consultancy, and services), upcoming CBMs (regenerating, looping, and sharing), and the preconditions (for value creation, capture, and delivery) for the circular business model innovation are extracted.  This study contributes to the existing body of knowledge in several ways. It enhances the current literature on challenges and enablers of EVBSL by covering various actors in this ecosystem and extends the knowledge on the scope of these factors. Moreover, this study is the first one that suggests a guiding framework for the ecosystem actors through configurations for second-life operations while shedding light on the preconditions of circular business innovation for EVBSL. This study also provides interesting insights for practitioners and managers in the EVBSL ecosystem. / RECREATE project

Page generated in 0.1033 seconds