• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 299
  • 103
  • 39
  • 35
  • 32
  • 23
  • 11
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 691
  • 126
  • 126
  • 123
  • 105
  • 93
  • 89
  • 82
  • 76
  • 70
  • 59
  • 57
  • 54
  • 53
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Généralisations de la théorie PAC-bayésienne pour l'apprentissage inductif, l'apprentissage transductif et l'adaptation de domaine

Germain, Pascal 23 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / En apprentissage automatique, l’approche PAC-bayésienne permet d’obtenir des garanties statistiques sur le risque de votes de majorité pondérés de plusieurs classificateurs (nommés votants). La théorie PAC-bayésienne «classique», initiée par McAllester (1999), étudie le cadre d’apprentissage inductif, sous l’hypothèse que les exemples d’apprentissage sont générés de manière indépendante et qu’ils sont identiquement distribués (i.i.d.) selon une distribution de probabilité inconnue mais fixe. Les contributions de la thèse se divisent en deux parties. Nous présentons d’abord une analyse des votes de majorité, fondée sur l’étude de la marge comme variable aléatoire. Il en découle une conceptualisation originale de la théorie PACbayésienne. Notre approche, très générale, permet de retrouver plusieurs résultats existants pour le cadre d’apprentissage inductif, ainsi que de les relier entre eux. Nous mettons notamment en lumière l’importance de la notion d’espérance de désaccord entre les votants. Bâtissant sur une compréhension approfondie de la théorie PAC-bayésienne, acquise dans le cadre inductif, nous l’étendons ensuite à deux autres cadres d’apprentissage. D’une part, nous étudions le cadre d’apprentissage transductif, dans lequel les descriptions des exemples à classifier sont connues de l’algorithme d’apprentissage. Dans ce contexte, nous formulons des bornes sur le risque du vote de majorité qui améliorent celles de la littérature. D’autre part, nous étudions le cadre de l’adaptation de domaine, dans lequel la distribution génératrice des exemples étiquetés de l’échantillon d’entraînement diffère de la distribution générative des exemples sur lesquels sera employé le classificateur. Grâce à une analyse théorique – qui se révèle être la première approche PAC-bayésienne de ce cadre d’apprentissage –, nous concevons un algorithme d’apprentissage automatique dédié à l’adaptation de domaine. Nos expérimentations empiriques montrent que notre algorithme est compétitif avec l’état de l’art. / In machine learning, the PAC-Bayesian approach provides statistical guarantees on the risk of a weighted majority vote of many classifiers (named voters). The “classical” PAC-Bayesian theory, initiated by McAllester (1999), studies the inductive learning framework under the assumption that the learning examples are independently generated and are identically distributed (i.i.d.) according to an unknown but fixed probability distribution. The thesis contributions are divided in two major parts. First, we present an analysis of majority votes based on the study of the margin as a random variable. It follows a new conceptualization of the PAC-Bayesian theory. Our very general approach allows us to recover several existing results for the inductive PAC-Bayesian framework, and link them in a whole. Among other things, we highlight the notion of expected disagreement between the voters. Building upon an improved understanding of the PAC-Bayesian theory, gained by studying the inductive framework, we then extend it to two other learning frameworks. On the one hand, we study the transductive framework, where the learning algorithm knows the description of the examples to be classified. In this context, we state risk bounds on majority votes that improve those from the current literature. On the other hand, we study the domain adaptation framework, where the generating distribution of the labelled learning examples differs from the generating distribution of the examples to be classified. Our theoretical analysis is the first PAC-Bayesian approach of this learning framework, and allows us to conceive a new machine learning algorithm for domain adaptation. Our empirical experiments show that our algorithm is competitive with other state-of-the-art algorithms.
162

Apprentissage automatique avec garanties de généralisation à l'aide de méthodes d'ensemble maximisant le désaccord

Roy, Jean-Francis 03 May 2018 (has links)
Nous nous intéressons au domaine de l’apprentissage automatique, une branche de l’intelligence artificielle. Pour résoudre une tâche de classification, un algorithme d’apprentissage observe des données étiquetées et a comme objectif d’apprendre une fonction qui sera en mesure de classifier automatiquement les données qui lui seront présentées dans le futur. Plusieurs algorithmes classiques d’apprentissage cherchent à combiner des classificateurs simples en construisant avec ceux-ci un classificateur par vote de majorité. Dans cette thèse, nous explorons l’utilisation d’une borne sur le risque du classificateur par vote de majorité, nommée la C-borne. Celle-ci est définie en fonction de deux quantités : la performance individuelle des votants, et la corrélation de leurs erreurs (leur désaccord). Nous explorons d’une part son utilisation dans des bornes de généralisation des classificateurs par vote de majorité. D’autre part, nous l’étendons de la classification binaire vers un cadre généralisé de votes de majorité. Nous nous en inspirons finalement pour développer de nouveaux algorithmes d’apprentissage automatique, qui offrent des performances comparables aux algorithmes de l’état de l’art, en retournant des votes de majorité qui maximisent le désaccord entre les votants, tout en contrôlant la performance individuelle de ceux-ci. Les garanties de généralisation que nous développons dans cette thèse sont de la famille des bornes PAC-bayésiennes. Nous généralisons celles-ci en introduisant une borne générale, à partir de laquelle peuvent être retrouvées les bornes de la littérature. De cette même borne générale, nous introduisons des bornes de généralisation basées sur la C-borne. Nous simplifions également le processus de preuve des théorèmes PAC-bayésiens, nous permettant d’obtenir deux nouvelles familles de bornes. L’une est basée sur une différente notion de complexité, la divergence de Rényi plutôt que la divergence Kullback-Leibler classique, et l’autre est spécialisée au cadre de l’apprentissage transductif plutôt que l’apprentissage inductif. Les deux algorithmes d’apprentissage que nous introduisons, MinCq et CqBoost, retournent un classificateur par vote de majorité maximisant le désaccord des votants. Un hyperparamètre permet de directement contrôler leur performance individuelle. Ces deux algorithmes étant construits pour minimiser une borne PAC-bayésienne, ils sont rigoureusement justifiés théoriquement. À l’aide d’une évaluation empirique, nous montrons que MinCq et CqBoost ont une performance comparable aux algorithmes classiques de l’état de l’art. / We focus on machine learning, a branch of artificial intelligence. When solving a classification problem, a learning algorithm is provided labelled data and has the task of learning a function that will be able to automatically classify future, unseen data. Many classical learning algorithms are designed to combine simple classifiers by building a weighted majority vote classifier out of them. In this thesis, we extend the usage of the C-bound, bound on the risk of the majority vote classifier. This bound is defined using two quantities : the individual performance of the voters, and the correlation of their errors (their disagreement). First, we design majority vote generalization bounds based on the C-bound. Then, we extend this bound from binary classification to generalized majority votes. Finally, we develop new learning algorithms with state-of-the-art performance, by constructing majority votes that maximize the voters’ disagreement, while controlling their individual performance. The generalization guarantees that we develop in this thesis are in the family of PAC-Bayesian bounds. We generalize the PAC-Bayesian theory by introducing a general theorem, from which the classical bounds from the literature can be recovered. Using this same theorem, we introduce generalization bounds based on the C-bound. We also simplify the proof process of PAC-Bayesian theorems, easing the development of new families of bounds. We introduce two new families of PAC-Bayesian bounds. One is based on a different notion of complexity than usual bounds, the Rényi divergence, instead of the classical Kullback-Leibler divergence. The second family is specialized to transductive learning, instead of inductive learning. The two learning algorithms that we introduce, MinCq and CqBoost, output a majority vote classifier that maximizes the disagreement between voters. An hyperparameter of the algorithms gives a direct control over the individual performance of the voters. These two algorithms being designed to minimize PAC-Bayesian generalization bounds on the risk of the majority vote classifier, they come with rigorous theoretical guarantees. By performing an empirical evaluation, we show that MinCq and CqBoost perform as well as classical stateof- the-art algorithms.
163

Interactions between gaussian processes and bayesian estimation

Wang, Ya Li 20 April 2018 (has links)
L’apprentissage (machine) de modèle et l’estimation d’état sont cruciaux pour interpréter les phénomènes sous-jacents à de nombreuses applications du monde réel. Toutefois, il est souvent difficile d’apprendre le modèle d’un système et de capturer les états latents, efficacement et avec précision, en raison du fait que la connaissance du monde est généralement incertaine. Au cours des dernières années, les approches d’estimation et de modélisation bayésiennes ont été extensivement étudiées afin que l’incertain soit réduit élégamment et de manière flexible. Dans la pratique cependant, différentes limitations au niveau de la modélisation et de l’estimation bayésiennes peuvent détériorer le pouvoir d’interprétation bayésienne. Ainsi, la performance de l’estimation est souvent limitée lorsque le modèle de système manque de souplesse ou/et est partiellement inconnu. De même, la performance de la modélisation est souvent restreinte lorsque l’estimateur Bayésien est inefficace. Inspiré par ces faits, nous proposons d’étudier dans cette thèse, les connections possibles entre modélisation bayésienne (via le processus gaussien) et l’estimation bayésienne (via le filtre de Kalman et les méthodes de Monte Carlo) et comment on pourrait améliorer l’une en utilisant l’autre. À cet effet, nous avons d’abord vu de plus près comment utiliser les processus gaussiens pour l’estimation bayésienne. Dans ce contexte, nous avons utilisé le processus gaussien comme un prior non-paramétrique des modèles et nous avons montré comment cela permettait d’améliorer l’efficacité et la précision de l’estimation bayésienne. Ensuite, nous nous somme intéressé au fait de savoir comment utiliser l’estimation bayésienne pour le processus gaussien. Dans ce cadre, nous avons utilisé différentes estimations bayésiennes comme le filtre de Kalman et les filtres particulaires en vue d’améliorer l’inférence au niveau du processus gaussien. Ceci nous a aussi permis de capturer différentes propriétés au niveau des données d’entrée. Finalement, on s’est intéressé aux interactions dynamiques entre estimation bayésienne et processus gaussien. On s’est en particulier penché sur comment l’estimation bayésienne et le processus gaussien peuvent ”travailler” de manière interactive et complémentaire de façon à améliorer à la fois le modèle et l’estimation. L’efficacité de nos approches, qui contribuent à la fois au processus gaussien et à l’estimation bayésienne, est montrée au travers d’une analyse mathématique rigoureuse et validée au moyen de différentes expérimentations reflétant des applications réelles. / Model learning and state estimation are crucial to interpret the underlying phenomena in many real-world applications. However, it is often challenging to learn the system model and capture the latent states accurately and efficiently due to the fact that the knowledge of the world is highly uncertain. During the past years, Bayesian modeling and estimation approaches have been significantly investigated so that the uncertainty can be elegantly reduced in a flexible probabilistic manner. In practice, however, several drawbacks in both Bayesian modeling and estimation approaches deteriorate the power of Bayesian interpretation. On one hand, the estimation performance is often limited when the system model lacks in flexibility and/or is partially unknown. On the other hand, the modeling performance is often restricted when a Bayesian estimator is not efficient and/or accurate. Inspired by these facts, we propose Interactions Between Gaussian Processes and Bayesian Estimation where we investigate the novel connections between Bayesian model (Gaussian processes) and Bayesian estimator (Kalman filter and Monte Carlo methods) in different directions to address a number of potential difficulties in modeling and estimation tasks. Concretely, we first pay our attention to Gaussian Processes for Bayesian Estimation where a Gaussian process (GP) is used as an expressive nonparametric prior for system models to improve the accuracy and efficiency of Bayesian estimation. Then, we work on Bayesian Estimation for Gaussian Processes where a number of Bayesian estimation approaches, especially Kalman filter and particle filters, are used to speed up the inference efficiency of GP and also capture the distinct input-dependent data properties. Finally, we investigate Dynamical Interaction Between Gaussian Processes and Bayesian Estimation where GP modeling and Bayesian estimation work in a dynamically interactive manner so that GP learner and Bayesian estimator are positively complementary to improve the performance of both modeling and estimation. Through a number of mathematical analysis and experimental demonstrations, we show the effectiveness of our approaches which contribute to both GP and Bayesian estimation.
164

Forêts Aléatoires PAC-Bayésiennes

Zirakiza, Brice 19 April 2018 (has links)
Dans ce mémoire de maîtrise, nous présentons dans un premier temps un algorithme de l'état de l'art appelé Forêts aléatoires introduit par Léo Breiman. Cet algorithme effectue un vote de majorité uniforme d'arbres de décision construits en utilisant l'algorithme CART sans élagage. Par après, nous introduisons l'algorithme que nous avons nommé SORF. L'algorithme SORF s'inspire de l'approche PAC-Bayes, qui pour minimiser le risque du classificateur de Bayes, minimise le risque du classificateur de Gibbs avec un régularisateur. Le risque du classificateur de Gibbs constitue en effet, une fonction convexe bornant supérieurement le risque du classificateur de Bayes. Pour chercher la distribution qui pourrait être optimale, l'algorithme SORF se réduit à être un simple programme quadratique minimisant le risque quadratique de Gibbs pour chercher une distribution Q sur les classificateurs de base qui sont des arbres de la forêt. Les résultasts empiriques montrent que généralement SORF est presqu'aussi bien performant que les forêts aléatoires, et que dans certains cas, il peut même mieux performer que les forêts aléatoires. / In this master's thesis, we present at first an algorithm of the state of the art called Random Forests introduced by Léo Breiman. This algorithm construct a uniformly weighted majority vote of decision trees built using the CART algorithm without pruning. Thereafter, we introduce an algorithm that we called SORF. The SORF algorithm is based on the PAC-Bayes approach, which in order to minimize the risk of Bayes classifier, minimizes the risk of the Gibbs classifier with a regularizer. The risk of Gibbs classifier is indeed a convex function which is an upper bound of the risk of Bayes classifier. To find the distribution that would be optimal, the SORF algorithm is reduced to being a simple quadratic program minimizing the quadratic risk of Gibbs classifier to seek a distribution Q of base classifiers which are trees of the forest. Empirical results show that generally SORF is almost as efficient as Random forests, and in some cases, it can even outperform Random forests.
165

Agnostic Bayes

Lacoste, Alexandre 20 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015 / L’apprentissage automatique correspond à la science de l’apprentissage à partir d’exemples. Des algorithmes basés sur cette approche sont aujourd’hui omniprésents. Bien qu’il y ait eu un progrès significatif, ce domaine présente des défis importants. Par exemple, simplement sélectionner la fonction qui correspond le mieux aux données observées n’offre aucune garantie statistiques sur les exemples qui n’ont pas encore été observées. Quelques théories sur l’apprentissage automatique offrent des façons d’aborder ce problème. Parmi ceux-ci, nous présentons la modélisation bayésienne de l’apprentissage automatique et l’approche PACbayésienne pour l’apprentissage automatique dans une vue unifiée pour mettre en évidence d’importantes similarités. Le résultat de cette analyse suggère que de considérer les réponses de l’ensemble des modèles plutôt qu’un seul correspond à un des éléments-clés pour obtenir une bonne performance de généralisation. Malheureusement, cette approche vient avec un coût de calcul élevé, et trouver de bonnes approximations est un sujet de recherche actif. Dans cette thèse, nous présentons une approche novatrice qui peut être appliquée avec un faible coût de calcul sur un large éventail de configurations d’apprentissage automatique. Pour atteindre cet objectif, nous appliquons la théorie de Bayes d’une manière différente de ce qui est conventionnellement fait pour l’apprentissage automatique. Spécifiquement, au lieu de chercher le vrai modèle à l’origine des données observées, nous cherchons le meilleur modèle selon une métrique donnée. Même si cette différence semble subtile, dans cette approche, nous ne faisons pas la supposition que le vrai modèle appartient à l’ensemble de modèles explorés. Par conséquent, nous disons que nous sommes agnostiques. Plusieurs expérimentations montrent un gain de généralisation significatif en utilisant cette approche d’ensemble de modèles durant la phase de validation croisée. De plus, cet algorithme est simple à programmer et n’ajoute pas un coût de calcul significatif à la recherche d’hyperparamètres conventionnels. Finalement, cet outil probabiliste peut également être utilisé comme un test statistique pour évaluer la qualité des algorithmes sur plusieurs ensembles de données d’apprentissage. / Machine learning is the science of learning from examples. Algorithms based on this approach are now ubiquitous. While there has been significant progress, this field presents important challenges. Namely, simply selecting the function that best fits the observed data was shown to have no statistical guarantee on the examples that have not yet been observed. There are a few learning theories that suggest how to address this problem. Among these, we present the Bayesian modeling of machine learning and the PAC-Bayesian approach to machine learning in a unified view to highlight important similarities. The outcome of this analysis suggests that model averaging is one of the key elements to obtain a good generalization performance. Specifically, one should perform predictions based on the outcome of every model instead of simply the one that best fits the observed data. Unfortunately, this approach comes with a high computational cost problem, and finding good approximations is the subject of active research. In this thesis, we present an innovative approach that can be applied with a low computational cost on a wide range of machine learning setups. In order to achieve this, we apply the Bayes’ theory in a different way than what is conventionally done for machine learning. Specifically, instead of searching for the true model at the origin of the observed data, we search for the best model according to a given metric. While the difference seems subtle, in this approach, we do not assume that the true model belongs to the set of explored model. Hence, we say that we are agnostic. An extensive experimental setup shows a significant generalization performance gain when using this model averaging approach during the cross-validation phase. Moreover, this simple algorithm does not add a significant computational cost to the conventional search of hyperparameters. Finally, this probabilistic tool can also be used as a statistical significance test to evaluate the quality of learning algorithms on multiple datasets.
166

Bornes PAC-Bayes et algorithmes d'apprentissage

Lacasse, Alexandre 16 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / L’objet principale de cette thèse est l’étude théorique et la conception d’algorithmes d’apprentissage concevant des classificateurs par vote de majorité. En particulier, nous présentons un théorème PAC-Bayes s’appliquant pour borner, entre autres, la variance de la perte de Gibbs (en plus de son espérance). Nous déduisons de ce théorème une borne du risque du vote de majorité plus serrée que la fameuse borne basée sur le risque de Gibbs. Nous présentons également un théorème permettant de borner le risque associé à des fonctions de perte générale. À partir de ce théorème, nous concevons des algorithmes d’apprentissage construisant des classificateurs par vote de majorité pondérés par une distribution minimisant une borne sur les risques associés aux fonctions de perte linéaire, quadratique, exponentielle, ainsi qu’à la fonction de perte du classificateur de Gibbs à piges multiples. Certains de ces algorithmes se comparent favorablement avec AdaBoost. / The main purpose of this thesis is the theoretical study and the design of learning algorithms returning majority-vote classifiers. In particular, we present a PAC-Bayes theorem allowing us to bound the variance of the Gibbs’ loss (not only its expectation). We deduce from this theorem a bound on the risk of a majority vote tighter than the famous bound based on the Gibbs’ risk. We also present a theorem that allows to bound the risk associated with general loss functions. From this theorem, we design learning algorithms building weighted majority vote classifiers minimizing a bound on the risk associated with the following loss functions : linear, quadratic and exponential. Also, we present algorithms based on the randomized majority vote. Some of these algorithms compare favorably with AdaBoost.
167

Bayesian methods for inverse problems in signal and image processing / Méthodes bayésiennes pour la résolution des problèmes inverses de grande dimension en traitement du signal et des images

Marnissi, Yosra 25 April 2017 (has links)
Les approches bayésiennes sont largement utilisées dans le domaine du traitement du signal. Elles utilisent des informations a priori sur les paramètres inconnus à estimer ainsi que des informations sur les observations, pour construire des estimateurs. L'estimateur optimal au sens du coût quadratique est l'un des estimateurs les plus couramment employés. Toutefois, comme la loi a posteriori exacte a très souvent une forme complexe, il faut généralement recourir à des outils d'approximation bayésiens pour l'approcher. Dans ce travail, nous nous intéressons particulièrement à deux types de méthodes: les algorithmes d'échantillonnage Monte Carlo par chaînes de Markov (MCMC) et les approches basées sur des approximations bayésiennes variationnelles (VBA).La thèse est composée de deux parties. La première partie concerne les algorithmes d'échantillonnage. Dans un premier temps, une attention particulière est consacrée à l'amélioration des méthodes MCMC basées sur la discrétisation de la diffusion de Langevin. Nous proposons une nouvelle méthode pour régler la composante directionnelle de tels algorithmes en utilisant une stratégie de Majoration-Minimisation ayant des propriétés de convergence garanties. Les résultats expérimentaux obtenus lors de la restauration d'un signal parcimonieux confirment la rapidité de cette nouvelle approche par rapport à l'échantillonneur usuel de Langevin. Dans un second temps, une nouvelle méthode d'échantillonnage basée sur une stratégie d'augmentation des données est proposée pour améliorer la vitesse de convergence et les propriétés de mélange des algorithmes d'échantillonnage standards. L'application de notre méthode à différents exemples en traitement d'images montre sa capacité à surmonter les difficultés liées à la présence de corrélations hétérogènes entre les coefficients du signal.Dans la seconde partie de la thèse, nous proposons de recourir aux techniques VBA pour la restauration de signaux dégradés par un bruit non-gaussien. Afin de contourner les difficultés liées à la forme compliquée de la loi a posteriori, une stratégie de majoration est employée pour approximer la vraisemblance des données ainsi que la densité de la loi a priori. Grâce à sa flexibilité, notre méthode peut être appliquée à une large classe de modèles et permet d'estimer le signal d'intérêt conjointement au paramètre de régularisation associé à la loi a priori. L'application de cette approche sur des exemples de déconvolution d'images en présence d'un bruit mixte Poisson-gaussien, confirme ses bonnes performances par rapport à des méthodes supervisées de l'état de l'art. / Bayesian approaches are widely used in signal processing applications. In order to derive plausible estimates of original parameters from their distorted observations, they rely on the posterior distribution that incorporates prior knowledge about the unknown parameters as well as informations about the observations. The posterior mean estimator is one of the most commonly used inference rule. However, as the exact posterior distribution is very often intractable, one has to resort to some Bayesian approximation tools to approximate it. In this work, we are mainly interested in two particular Bayesian methods, namely Markov Chain Monte Carlo (MCMC) sampling algorithms and Variational Bayes approximations (VBA).This thesis is made of two parts. The first one is dedicated to sampling algorithms. First, a special attention is devoted to the improvement of MCMC methods based on the discretization of the Langevin diffusion. We propose a novel method for tuning the directional component of such algorithms using a Majorization-Minimization strategy with guaranteed convergence properties.Experimental results on the restoration of a sparse signal confirm the performance of this new approach compared with the standard Langevin sampler. Second, a new sampling algorithm based on a Data Augmentation strategy, is proposed to improve the convergence speed and the mixing properties of standard MCMC sampling algorithms. Our methodological contributions are validated on various applications in image processing showing the great potentiality of the proposed method to manage problems with heterogeneous correlations between the signal coefficients.In the second part, we propose to resort to VBA techniques to build a fast estimation algorithm for restoring signals corrupted with non-Gaussian noise. In order to circumvent the difficulties raised by the intricate form of the true posterior distribution, a majorization technique is employed to approximate either the data fidelity term or the prior density. Thanks to its flexibility, the proposed approach can be applied to a broad range of data fidelity terms allowing us to estimate the target signal jointly with the associated regularization parameter. Illustration of this approach through examples of image deconvolution in the presence of mixed Poisson-Gaussian noise, show the good performance of the proposed algorithm compared with state of the art supervised methods.
168

Modelo comportamental baseado em crenças e teoria Bayesiana para simulações de vida artificial com humanos virtuais. / Behavioral model based in belief and Bayesian theory for virtual humans simulation in artificial life.

Cavalhieri, Marcos Antonio 11 April 2006 (has links)
O trabalho reúne características relacionadas aos escopos de pesquisa de Vida e Inteligência Artificial, Ciência Cognitiva, e Realidade Virtual. O objetivo primordial é a concepção de um modelo de comportamento autônomo e adaptativo que permita a interação do personagem virtual num ambiente, mesmo dispondo de informações incertas e vagas. Sob esse intuito o projeto desenvolve a conciliação de recursos para tratarem a idéia de racionalizar sobre tais incertezas, promovendo assim, a capacidade de agir assumindo-se alguns riscos decorrentes desse caráter inexato. Por conseqüência, os humanos virtuais são capazes de observarem o ambiente no qual se situam, apresentarem representações internas e racionalizadas dessas informações incertas, que no trabalho são levantadas como crenças, e ainda tomarem decisões baseadas nessas informações. Através do processo de decisão o personagem é capaz de reavaliar as suas crenças; implicando em um comportamento maduro em decorrência dos procedimentos usados para deliberar e realizar ações em um ambiente virtual. / This work puts together features related to the research areas of Artificial Life, Artificial Intelligence, Cognitive Science and Virtual Reality. The main goal of this work is the conception of an adaptive and autonomous behavior model which alows the interaction, even with uncertain information, between a virtual character and an environment. Therefore, resources are organized to be handled rationally with uncertainties, thus, the ability to act assuming some risks of this inexact aspect are granted. The results enable the virtual humans to observe their environment, to present internal and rationalized representations of this uncertain information, represented in this work as beliefs, and taking decisions based on this information. Through the decision process, the character can re-evaluate its beliefs; which imply in a mature behavior, as a consequence of how procedures are used to deliberate and to perform actions in a virtual environment.
169

Análise espaço-temporal dos casos de aids no Estado de São Paulo - 1990 a 2004 / Space-time analysis of the cases of AIDS in State of São Paulo

Prado, Rogério Ruscitto do 11 July 2008 (has links)
Introdução: O Estado de São Paulo, por compreender aproximadamente 40% dos casos de aids notificados no Brasil, oferece situação favorável para análise espaço-temporal, visando melhor compreensão da disseminação do HIV/aids. Objetivo: Avaliar a adequação de um modelo espaço-temporal para análise da dinâmica de disseminação da aids segundo áreas geográficas. Material e método: Foram utilizados os casos de aids notificados ao Sistema de Informação de Agravos de Notificação (SINAN - Ministério da Saúde) nos anos de 1990 a 2004 para pessoas com idade igual ou superior a 15 anos e foram criados os riscos relativos de ter aids segundo sexo para períodos de 3 anos utilizando modelos bayesianos completos supondo disseminação geográfica local e disseminação geográfica global. Resultados: O crescimento da aids no interior do Estado de São Paulo é apresentado claramente pelos modelos ajustados uma vez que entre os 50 municípios com maiores riscos relativos de aids no último período do estudo a maioria é do interior. As taxas estimadas de crescimento da aids para as mulheres foram, em sua maioria, de 200% a 300%, enquanto que para os homens este crescimento foi de 100% a 200%. Conclusão: O modelo bayesiano com disseminação global se mostrou mais adequado para explicação da epidemia de aids no Estado de São Paulo, pois não foi encontrada expansão espacial da aids no Estado, mas sim o crescimento local da doença. Os modelos corroboram os fenômenos de feminização e interiorização descritos à exaustão na literatura, o que indica suas adequações. / Introduction: The State of São Paulo, with approximately 40% of the notified cases of AIDS in Brazil, offers a favorable opportunity for a space-time analysis of this disease, which can provide a better understanding of the dissemination of the HIV/AIDS. Objective: To evaluate the adequacy of on space-time modeling to analyze the dynamics of AIDS dissemination according to geographic areas. Methods: Cases of AIDS reported to the Sistema de Informação de Agravos de Notificação (National Disease Reporting System) (SINAN - Ministry of Health) from 1990 to 2004, for people aged 15 years or older were selected. Relative risks of aids for each sex for periods of 3 years were created using complete bayesians models assuming local and global geographic dissemination. Results: The performed analyzes showed that these models were adequate to explain the AIDS dissemination in the State of São Paulo and clearly showed the processes of growth among females and in small size cities. Among the 50 cities with the largest relative risks of AIDS in the last period of study the majority were in the countryside. In general estimated growth rates of AIDS among females were between 200% and 300% while for males were between 100% and 200%. Conclusion: The bayesian model with global dissemination was more adequate to explain the AIDS epidemic in the State of São Paulo since no spatial spreading was observed but instead a local expansion of the disease. The models were consistent with the processes of growth among females and in small size cities, described in the literature indicating their adequacy.
170

Análise de agrupamento de semeadoras manuais quanto à distribuição do número de sementes / Cluster analysis of manual planters according to the distribution of the number of seeds

Araripe, Patricia Peres 10 December 2015 (has links)
A semeadora manual é uma ferramenta que, ainda nos dias de hoje, exerce um papel importante em diversos países do mundo que praticam a agricultura familiar e de conservação. Sua utilização é de grande importância devido a minimização do distúrbio do solo, exigências de trabalho no campo, maior produtividade sustentável entre outros fatores. De modo a avaliar e/ou comparar as semeadoras manuais existentes no mercado, diversos trabalhos têm sido realizados, porém considerando somente medidas de posição e dispersão. Neste trabalho é utilizada, como alternativa, uma metodologia para a comparação dos desempenhos das semeadoras manuais. Neste caso, estimou-se as probabilidades associadas a cada categoria de resposta e testou-se a hipótese de que essas probabilidades não variam para as semeadoras quando comparadas duas a duas, utilizando o teste da razão das verossimilhanças e o fator de Bayes nos paradigmas clássico e bayesiano, respectivamente. Por fim, as semeadoras foram agrupadas considerando, como medida de distância, a medida de divergência J-divergência na análise de agrupamento. Como ilustração da metodologia apresentada, são considerados os dados para a comparação de quinze semeadoras manuais de diferentes fabricantes analisados por Molin, Menegatti e Gimenez (2001) em que as semeadoras foram reguladas para depositarem exatamente duas sementes por golpe. Inicialmente, na abordagem clássica, foram comparadas as semeadoras que não possuíam valores nulos nas categorias de resposta, sendo as semeadoras 3, 8 e 14 as que apresentaram melhores comportamentos. Posteriormente, todas as semeadoras foram comparadas duas a duas, agrupando-se as categorias e adicionando as contantes 0,5 ou 1 à cada categoria de resposta. Ao agrupar categorias foi difícil a tomada de conclusões pelo teste da razão de verossimilhanças, evidenciando somente o fato da semeadora 15 ser diferente das demais. Adicionando 0,5 ou 1 à cada categoria não obteve-se, aparentemente, a formação de grupos distintos, como a semeadora 1 pelo teste diferiu das demais e apresentou maior frequência no depósito de duas sementes, o exigido pelo experimento agronômico, foi a recomendada neste trabalho. Na abordagem bayesiana, utilizou-se o fator de Bayes para comparar as semeadoras duas a duas, no entanto as conclusões foram semelhantes às obtidas na abordagem clássica. Finalmente, na análise de agrupamento foi possível uma melhor visualização dos grupos de semeadoras semelhantes entre si em ambas as abordagens, reafirmando os resultados obtidos anteriormente. / The manual planter is a tool that today still has an important role in several countries around the world, which practices family and conservation agriculture. The use of it has importance due to minimizing soil disturbance, labor requirements in the field, most sustainable productivity and other factors. In order to analyze and/or compare the commercial manual planters, several studies have been conducted, but considering only position and dispersion measures. This work presents an alternatively method for comparing the performance of manual planters. In this case, the probabilities associated with each category of response has estimated and the hypothesis that these probabilities not vary for planters when compared in pairs evaluated using the likelihood ratio test and Bayes factor in the classical and bayesian paradigms, respectively. Finally, the planters were grouped considering as a measure of distance, the divergence measure J-divergence in the cluster analysis. As an illustration of this methodology, the data from fifteen manual planters adjusted to deposit exactly two seeds per hit of different manufacturers analyzed by Molin, Menegatti and Gimenez (2001) were considered. Initially, in the classical approach, the planters without zero values in response categories were compared and the planters 3, 8 and 14 presents the better behavior. After, all the planters were compared in pairs, grouping categories and adding the constants 0,5 or 1 for each response category. Grouping categories was difficult making conclusions by the likelihood ratio test, only highlighting the fact that the planter 15 is different from others. Adding 0,5 or 1 for each category, apparently not obtained the formation of different groups, such as planter 1 which by the test differed from the others and presented more frequently the deposit of two seeds, required by agronomic experiment and recommended in this work. In the Bayesian approach, the Bayes factor was used to compare the planters in pairs, but the findings were similar to those obtained in the classical approach. Finally, the cluster analysis allowed a better idea of similar planters groups with each other in the both approaches, confirming the results obtained previously.

Page generated in 0.0544 seconds