51 |
Klasifikace dokumentů podle tématu / Document ClassificationMarek, Tomáš January 2013 (has links)
This thesis deals with a document classification, especially with a text classification method. Main goal of this thesis is to analyze two arbitrary document classification algorithms to describe them and to create an implementation of those algorithms. Chosen algorithms are Bayes classifier and classifier based on support vector machines (SVM) which were analyzed and implemented in the practical part of this thesis. One of the main goals of this thesis is to create and choose optimal text features, which are describing the input text best and thus lead to the best classification results. At the end of this thesis there is a bunch of tests showing comparison of efficiency of the chosen classifiers under various conditions.
|
52 |
Introduction to Probability TheoryChen, Yong-Yuan 25 May 2010 (has links)
In this paper, we first present the basic principles of set theory and combinatorial analysis which are the most useful tools in computing probabilities. Then, we show some important properties derived from axioms of probability. Conditional probabilities come into play not only when some partial information is available, but also as a tool to compute probabilities more easily, even when partial information is unavailable. Then, the concept of random variable and its some related properties are introduced. For univariate random variables, we introduce the basic properties of some common discrete and continuous distributions. The important properties of jointly distributed random variables are also considered. Some inequalities, the law of large numbers and the central limit theorem are discussed. Finally, we introduce additional topics the Poisson process.
|
53 |
Computational Bayesian techniques applied to cosmologyHee, Sonke January 2018 (has links)
This thesis presents work around 3 themes: dark energy, gravitational waves and Bayesian inference. Both dark energy and gravitational wave physics are not yet well constrained. They present interesting challenges for Bayesian inference, which attempts to quantify our knowledge of the universe given our astrophysical data. A dark energy equation of state reconstruction analysis finds that the data favours the vacuum dark energy equation of state $w {=} -1$ model. Deviations from vacuum dark energy are shown to favour the super-negative ‘phantom’ dark energy regime of $w {< } -1$, but at low statistical significance. The constraining power of various datasets is quantified, finding that data constraints peak around redshift $z = 0.2$ due to baryonic acoustic oscillation and supernovae data constraints, whilst cosmic microwave background radiation and Lyman-$\alpha$ forest constraints are less significant. Specific models with a conformal time symmetry in the Friedmann equation and with an additional dark energy component are tested and shown to be competitive to the vacuum dark energy model by Bayesian model selection analysis: that they are not ruled out is believed to be largely due to poor data quality for deciding between existing models. Recent detections of gravitational waves by the LIGO collaboration enable the first gravitational wave tests of general relativity. An existing test in the literature is used and sped up significantly by a novel method developed in this thesis. The test computes posterior odds ratios, and the new method is shown to compute these accurately and efficiently. Compared to computing evidences, the method presented provides an approximate 100 times reduction in the number of likelihood calculations required to compute evidences at a given accuracy. Further testing may identify a significant advance in Bayesian model selection using nested sampling, as the method is completely general and straightforward to implement. We note that efficiency gains are not guaranteed and may be problem specific: further research is needed.
|
Page generated in 0.0411 seconds