• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Three-dimensional analysis of optical transition radiation

Longstaff, Wilmer Gregg 12 1900 (has links)
Approved for public release; distribution is unlimited / A three dimensional analysis of the intensity distribution of backward optical transition radiation has been performed. The effects of variations in electron energy and beam divergence and on material properties such as dielectric permittivities and the resultant coherence length upon the angular distribution and polarization of optical transition radiation has been investigated. A surprising observation important to the use of optical transition radiation as a diagnostic tool for high energy electron beams is the behavior of the perpendicular component of the intensity. In contrast to low energies where the parallel component dominates, at electron energies above 200 MeV, the perpendicular component dominates. This requires the use of a polarization filter to diagnose particle beam properties at high energies. / http://archive.org/details/threedimensional00long / Lieutenant, United States Navy
2

A view screen beam profile monitor for the ARIEL e-linac at TRIUMF

Storey, Douglas Wesley 16 August 2011 (has links)
A megawatt class electron linear accelerator (e-linac) will be constructed at TRIUMF as part of the new ARIEL facility which will produce rare ion beams for the study of nuclear structure and astrophysics, and material science. The 50MeV, 10mA, continuous wave e-linac will drive gamma ray induced fissioning of a Uranium target for the production of neutron rich beam species. View Screens located at a number of places along the e-linac beam-line will acquire two dimensional images of the transverse electron beam profiles, providing measurements of the size, position, and shape of the incident e-linac beam. The design of the View Screens will be presented, based on design studies and simulations performed to evaluate the performance of the View Screens under various operating conditions. These studies include GEANT simulations of the energy loss and scattering of the electron beam as it passes through the scintillation and Optical Transition Radiation beam targets, the subsequent thermal response of the targets, and a ray tracing optics simulation to optimize the configuration of the imaging optics. Bench test have been performed on the resulting optics design to evaluate the imaging characteristics, verifying fulfillment of the design requirements. Construction of a prototype View Screen device is currently underway, with beam tests scheduled for Fall 2011. A total of 14 View Screens will be constructed and installed along the e-linac beam-line. / Graduate
3

Beam Diagnostics and Dynamics in Nonlinear Fields

Ögren, Jim January 2017 (has links)
Particle accelerators are indispensable tools for probing matter at the smallest scales and the improvements of such tools depend on the progress and understanding of accelerator physics. The Compact Linear Collider (CLIC) is a proposed, linear electron–­positron collider on the TeV-scale, based at CERN. In such a large accelerator complex, diagnostics and alignment of the beam are crucial in order to maintain beam quality and luminosity. In this thesis we have utilized the nonlinear fields from the octupole component of the radio-frequency fields in the CLIC accelerating structures for beam-based diagnostics. We have investigated methods where the nonlinear position shifts of the beam are used to measure the strength of the octupole component and can also be used for alignment. Furthermore, from the changes in transverse beam profile, due to the nonlinear octupole field, we determine the full transverse beam matrix, which characterizes the transverse distribution of the beam. In circular accelerators, nonlinear fields result in nonlinear beam dynamics, which often becomes the limiting factor for long-term stability. In theoretical studies and simulations we investigate optimum configurations for octupole magnets that compensate amplitude-dependent tune-shifts but avoid driving fourth-order resonances and setups of sextupole magnets to control individual resonance driving terms in an optimal way.
4

Design of non-invasive profile monitors for the ESS proton beam / Conception de profileurs non invasifs pour le faisceau de protons de ESS

Benedetti, Florian 23 September 2019 (has links)
La source européenne de spallation (ESS) sera une infrastructure de recherche dévolue aux sciences utilisant les neutrons comme sonde d’observation. Elle est actuellement en construction à Lund, en Suède, et sera la plus brillante des sources de neutrons pulsées au monde. Comme son nom l'indique, la production des neutrons est assurée par les processus de spallation : des protons à haute énergie bombardant une cible de tungstène. Le faisceau de protons est généré par un puissant accélérateur linéaire de 2 GeV qui peut être divisé en deux parties : une partie "chaude" qui accélère les protons jusqu'à 90 MeV, suivie d’une partie « froide » constituée de cavités supraconductrices refroidies à l'hélium liquide, permettant d’atteindre les 2 GeV. La forte intensité de 62.5 mA et la longue impulsion de 2,86 ms répétée 14 fois par seconde, conduisent à une puissance moyenne de faisceau de 5 MW et une puissance crête de 125 MW. La connaissance du faisceau est donc indispensable pour la mise en service, c'est-à-dire le réglage du faisceau afin d'assurer un fonctionnement correct et sûr de la machine. Différents diagnostics seront installés le long de l'accélérateur pour remplir ces tâches.Cette thèse traite du développement d'un profileur transverse non invasif pour la partie froide de l’accélérateur de ESS : les Ionization Profile Monitors (IPM). La thèse se concentre sur les aspects critiques des IPM afin de s’assurer de leur faisabilité dans les conditions du faisceau de ESS. Ces moniteurs sont basés sur l’ionisation induite par le passage des protons du gaz résiduel présent dans le tube de l’accélérateur. Un champ électrique est appliqué entre deux plaques parallèles de l'IPM. Les électrons ou les ions dérivent vers un détecteur segmenté permettant de reconstruire le profil dans une direction transverse du faisceau.Plusieurs défis, qui auraient pu compromettre l’utilisation des IPM pour les mesures des profils de faisceau à ESS, sont décrits :• Les faibles taux de comptage dus aux faibles sections efficaces d'ionisation à haute énergie (90 à 2000 MeV) ainsi qu’aux basses pressions du gaz résiduel de l’ordre de 10-9 mbar,• L'homogénéité du champ électrique à l'intérieur de l'IPM, essentiel pour assurer des mesures de profils précises mais difficile pour les chambres à vide étriquées des IPM,• L’importante charge d'espace du faisceau, qui distord le profil mesuré en déviant lestrajectoires des produits d'ionisation. Cet aspect fondamental peut remettre en cause l’utilisation d’IPM pour faire des mesures fiables de profil de faisceau.Une fois ces études terminées, nous avons sélectionné trois systèmes de lecture fiables, basés sur :• des pistes conductrices lues par un intégrateur de charge multicanal,• des détecteurs à micro-canaux couplés à un écran phosphore (pMCP),• un détecteur de silicium développé au CERN, et utilisé en particulier pour le futur profileur du faisceau du PS.Ces études ont fait l’objet d’une Revue de Conception Préliminaire (PDR 2017/01) marquant le début de la construction des différents prototypes. Les tests préliminaires ont écarté la possibilité d'utiliser des détecteurs au silicium en raison des trop faibles énergies des ions incidents.En partant de zéro, des IPM, des moniteurs de référence et un banc d’essai ont été conçus et installés sur l’accélérateur de protons IPHI à Saclay. Les conditions expérimentales de ESS ont été reproduites afin de valider une solution pour les IPM, ainsi que tester nos modèles.Les campagnes de test ont montré qu'un MCP était nécessaire pour détecter le signal d’ionisation. De plus, l'IPM optique (pMCP + caméra) est la solution recommandée car elle offre une sensibilité plus élevée. Le retour d’expérience accumulé lors des tests des prototypes, nous a permis de proposer une conception quasi finale d’un IPM, présentée lors de la Revue Critique de Conception (CDR 2019/02), menant au début de la phase de production. / The European Spallation Source (ESS) will be a research infrastructure dedicated to sciences using neutrons as probes. The source is currently under construction in Lund, Sweden, and will be the world’s brightest pulsed source of neutrons. As its name suggests, the production of neutrons is ensured by the spallation process: high energy protons will impinge a tungsten target. To accelerate the protons, a powerful 2 GeV linear accelerator is being built. The accelerator can be split in two parts. A “hot” part is responsible for acceleration up to 90 MeV. Then a “cold” part made of superconducting cavities cooled with liquid helium is used to reach the highest energies. The high intensity of 62.5 mA and he long pulse of 2.86 ms repeated 14 times per second, lead to an incredible beam power of 5 MW in average and 125 MW in peak. The knowledge of the beam is therefore mandatory to ensure the commissioning, i.e. the beam tuning in order to achieve a proper and safe functioning of the machine. Different diagnostics will be installed along the accelerator to fulfil these tasks.This thesis deals with the development of a non-invasive transverse profiler for the cold part of the ESS accelerator: the Ionization Profile Monitor (IPM).The thesis focuses on critical aspects of the IPMs to guarantee its feasibility in ESS beam conditions. These monitors are based on the ionization of the residual gas induced by the proton beam inside the beam pipe. A transverse electrical field is generated between both parallel plates of the IPM. The electrons or ions drift, with respect to the electric field, towards a segmented detector allowing the reconstruction of the beam profile in one transverse direction. For a complete transverse profile, it is necessary to add a second profiler tilted by 90°.Several challenges for facing IPM to the ESS conditions, which may compromise their use, are described:• the weak counting rates due to the low ionization cross-sections at high energy (90 to 2000 MeV) and to the low residual gas pressure of 10-9 mbar,• the electric field homogeneity inside the IPM, which is relevant for insuring a precise profile measurement, was not obvious in the narrow vacuum chambers devoted to them,• the large Space Charge Effect of the beam, distorting the measured profile by deviating the ionization by-product trajectories. This fundamental aspect may compromise the use of an IPM for beam profile measurements.Once these former studies done, we selected the three reliable read-out systems based on:• conductive strips read by a multichannel charge integrator,• micro-channel plates coupled with phosphor screen (pMCP),• a silicon detector developed at CERN and foreseen for the future PS beam profiler.This work was the object of the Preliminary Design Review (PDR 2017/01) marking the beginning of the construction phase of the different prototypes. Preliminary tests discarded the possibility of using silicon detectors due to the low ion energies.Starting from scratch, IPMs, reference monitors and a test bench were designed and installed at the IPHI proton accelerator at Saclay. Close ESS conditions were achieved to validate an IPM solution and our simulations.The test campaigns showed that an MCP is mandatory to detect signal. Moreover, the optical IPM (pMCP + Camera) is the preferred solution since it provides higher sensitivity. Feedbacks from the prototype test campaigns, allows us to deliver an IPM final design presented during the Critical Design Review (CDR 2019/02) leading to the beginning of the production phase.
5

Development of a gamma-ray beam profile monitor for the high-intensity gamma-ray source

Regier, Thomas Zachary 29 October 2003
Beam profile monitors provide position and ux distribution information to facilitate the configuration of an experimental apparatus and are an important component of any accelerator facilities beam diagnostic system. Nuclear physics experiments typically involve the incidence of high energy particles or gamma-rays on some target material and the detection of the products of the ensuing interactions. Therefore, knowing the profile of the incident radiation beam is desirable. To address the need for a profile monitor for the High-Intensity Gamma-Ray Source, development of a CCD-based gamma-ray beam profiler was undertaken. The profiler consisted of plastic scintillator, a lens system and a Starlight Express MX5 CCD camera, all contained within a light tight box. The scintillation pattern, created by the interaction between the incident gamma-rays and the scintillator, could be focused onto the CCD. Simulations were used to determine the amount of power that would be absorbed for different beam energies and scintillator thicknesses. The use of a converter material, placed directly against the scintillator to improve power deposition, was also investigated. The system was tested in order to and the camera noise characteristics, the optical resolution and magnification and the systems responsivity to power absorption in the scintillator. Using a 137Cs source, preliminary beam proles were obtained. By combining the results of the testing and simulation, predictions of the required length of exposure were made. It was determined that a beam with a flux of 10^6/s and a diameter of 2.5 cm could be profiled, using 6.0 mm of plastic scintillator and 0.6 mm of iron converter, to within 5% error per 0.64 mm x 0.91 mm resolving unit, in less than 1 minute.
6

Development of a gamma-ray beam profile monitor for the high-intensity gamma-ray source

Regier, Thomas Zachary 29 October 2003 (has links)
Beam profile monitors provide position and ux distribution information to facilitate the configuration of an experimental apparatus and are an important component of any accelerator facilities beam diagnostic system. Nuclear physics experiments typically involve the incidence of high energy particles or gamma-rays on some target material and the detection of the products of the ensuing interactions. Therefore, knowing the profile of the incident radiation beam is desirable. To address the need for a profile monitor for the High-Intensity Gamma-Ray Source, development of a CCD-based gamma-ray beam profiler was undertaken. The profiler consisted of plastic scintillator, a lens system and a Starlight Express MX5 CCD camera, all contained within a light tight box. The scintillation pattern, created by the interaction between the incident gamma-rays and the scintillator, could be focused onto the CCD. Simulations were used to determine the amount of power that would be absorbed for different beam energies and scintillator thicknesses. The use of a converter material, placed directly against the scintillator to improve power deposition, was also investigated. The system was tested in order to and the camera noise characteristics, the optical resolution and magnification and the systems responsivity to power absorption in the scintillator. Using a 137Cs source, preliminary beam proles were obtained. By combining the results of the testing and simulation, predictions of the required length of exposure were made. It was determined that a beam with a flux of 10^6/s and a diameter of 2.5 cm could be profiled, using 6.0 mm of plastic scintillator and 0.6 mm of iron converter, to within 5% error per 0.64 mm x 0.91 mm resolving unit, in less than 1 minute.
7

Développement des instruments de mesures des profiles transversaux et d'emittance pour l'accélérateur linéaire LINAC4 au CERN / Development of beam transverse profile and emittance monitors for the CERN LINAC4

Cheymol, Benjamin 15 December 2011 (has links)
Dans les prochaines années, le complexe d'accélérateur du CERN va subir une profonde mise a jour dont le but est une augmentation de la luminosité du LHC. Le projet LIU ( LHC Injectors Upgrade) coordonne les mises a jour des différentes parties de la chaine d'injection. Le projet LINAC4 s'inscrit dans ce cadre et sera la première étape de la mise à jour. Cette thèse présente les différentes études conduites lors du développement de l'instrumentation nécessaire à la mesure du faisceau. Ce travail est limité aux instruments permettant la mesure des profils transverses (taille et emittance). La thèse se divise en quatre parties. La première partie, composée des trois premiers chapitres, est vue comme une partie d'introduction où il sera présenté le projet LINAC4 ainsi que les différents aperçus théoriques nécessaires à la conception de types d'instruments requis. Le chapitre 2 décrit brièvement la dynamique des faisceaux dans un accélérateur et présente également des rappels théoriques sur l'effet de charge d'espace induit par le faisceau. Le chapitre 3 est un rappel sur les interactions entre particules et matière. La seconde partie, comprenant les chapitres 4 a 6, décrit les différentes études menées lors de la conception des SEM grid, wire scanner et emittance mètre. Le lecteur trouvera dans cette partie une description des instruments mentionnés et qui seront déployés lors de la phase de test et pendant la phase d'opération du LINAC4. Le chapitre 4 s'attarde sur les effet de charge thermique induite sur les fils des SEM grid et wire beam scanner par le faisceau et leur conséquence sur la survit de ces fils. Le LINAC4 va produire un faisceau intense d'ion H-, avec une taille de faisceau de l'ordre du millimètre, cette densité de particule va, à basse énergie, induire un grand dépôt d'énergie dans la matière. La hausse de température qui en résulte peut dépasser les limites thermomécaniques des matériaux usuels employés pour ce type de mesure. Cette étude permet de déterminer le matériau idéal pour le fil et d'imposer certaines restrictions sur l'utilisation des différents moniteurs de profils. Au sein de ce chapitre il est aussi présente une estimation des signaux obtenus pour des géométries et des matériaux de fils différents. Les chapitres 5 et 6 sont une études de l'emittance mètre a moyenne énergie du LINAC4 (3 et 12 MeV), le système employé est un système dit "Slit & grid", ou une fente permet de sélectionner une faible partie du faisceau, le reste étant absorbé, le profil du faisceau non perturbé est mesuré par une grille. Le chapitre 5 présente une étude sur les erreurs systématiques des mesures d'emittance dû a la diffusion multiple et a l'effet de charge d'espace du faisceau, ces deux phénomènes constituant les principales erreurs conduisant à une mauvaise reconstruction de l'emittance mesurée. Le chapitre 6 quant a lui est dédié à l'étude mécanique de la fente de l'emittance mètre. Comme pour les fils des moniteurs de profils, la charge thermique sur la partie supportant la slit est importante. Ce chapitre décrit les études effectuées pour le choix des matériaux et de la géométrie des pièces mécaniques. La troisième partie de la thèse, qui se résume au chapitre 7, est consacrée aux différents résultats expérimentaux obtenus dans la phase de test de la source de particule du LINAC4 ainsi que ceux obtenus lors d'une visite d'étude à SNS. Une partie de se chapitre décrira la mise au point de l'instrumentation aux banc test de la source, une autre présente l'effet de la diffusion multiple sur les mesures d'emittance à SNS et propose une mise a jour de l'instrument. Le chapitre 8 constitue la dernière partie de cette thèse. Dans ce dernier chapitre, le lecteur pourra lire une étude préliminaire sur l'utilisation d'un faisceau laser pour la mesure d'emittance et de profil aux hautes énergies du linac. / LINAC4 is part of the CERN Large Hadron Collider injector chain upgrade (LIU) and will accelerate H− ions from 45 keV to 160 MeV, it will be the first step of the upgrade with the replacement of LINAC2 in 2018. In order to measure beam profiles along the LINAC, several SEM grid and wire beam scanner (WS) monitors will be installed between the RF cavities from 50 MeV to 160 MeV. This thesis covers all monitor design aspects intended to cope with the required specifications. In particular, the overall measurement robustness, accuracy and sensitivity must be satisfied for different commissioning and operational scenarios. The physics mechanisms generating the wire signals and the wire resistance to beam induced thermal loads have been considered in order to determine the most appropriate monitor design in terms of wire material and dimensions. In addition, for the commissioning phase, a movable diagnostics test bench will be used to adjust the machine parameters during different stages of installation. One of the main instruments on this movable bench is a transverse emittance meter. This thesis presents the different studies done for the mechanical design of the slit and for the estimation of the systematical error on the measurement due to space charge and multiple scattering. To complete this section, the first results of the commissioning of the LINAC4 ions source and LEBT are presented, together with results form emittance measurement taken at the Spallation Neutron Source in Oak Ridge (Tennessee, USA). This last part of the thesis presents different studies done for a beam profiles and emittance measurements with a laser wire, with a large input from the SNS beam diagnostic group.
8

Beam position monitoring in the clic drive beam decelerator using stripline technology

Benot Morell, Alfonso 16 May 2016 (has links)
[EN] The Compact Linear Collider (CLIC) is an electron-positron collider conceived for the study of High-Energy Physics in the TeV center of mass energy region, is based on a two-beam operation principle: instead of using active elements (klystrons), the necessary RF power to accelerate the Main Beam (MB) is obtained from the deceleration of a high-current, moderate energy Drive Beam (DB) in the so-called Power Extraction and Transfer Structures (PETS). These structures emit an RF signal of about 130 MW power at 12 GHz. As this frequency is above the cut-o ff frequency of the fundamental mode for the specified beam pipe dimensions (7.6 GHz), the inference propagates from the PETS to the neighboring devices, including the Beam Position Monitors (BPM). According to the CLIC Conceptual Design Report (CDR), an ef ficient beam position monitoring system for the CLIC DB decelerator needs to meet the following requirements: - It should be as simple and economic as possible, as 41580 units are required, amounting to 75% of all CLIC BPMs. - The signal processing scheme should not be a ffected by the PETS interference. This rules out processing the signals at the beam bunching frequency (12 GHz). - The resulting position signal should detect changes in the beam position whose duration is 10 ns or longer. - The required spatial resolution is 2 um for a 23 mm diameter vacuum pipe. - Wide dynamic range: the electronic acquisition system must be able to process signals with extreme levels, induced by either very high (100 A) or very low (3 A) current beams. This PhD thesis describes the electromagnetic and mechanical design of the first prototype BPM developed for the CLIC Drive Beam and its characterization tests in laboratory and with beam. The first two chapters introduce the CLIC project and review the state-of-the-art beam position monitoring techniques. Chapter 3 presents the design of the BPM. The stripline technology has been selected, as it is the only one among the most commonly used BPM techniques to present a suitable frequency response to filter out the RF interference caused by the PETS. Choosing an appropriate length for the electrodes, it is possible to tune one the periodic notches in the stripline frequency response to 12 GHz. The influence of di erent electromagnetic and geometrical aspects is also studied, such as beam coupling impedance or the ratio between longitudinal and transverse dimensions. The design of the electronic acquisition system is presented in Chapter 4, considering the project requirements in terms of resolution (2 u m), accuracy (20 um) and time resolution (10 ns). Due to the high amount of units required, the number of electronics components has been minimized. As the designed signal processing scheme is based on charge integration, it can be adapted to di erent stripline pick-ups by simply modifying the attenuator settings according to the required output signal levels. The laboratory characterization tests of the prototype stripline BPM, in the low and the high frequency ranges, performed with a thin wire and a coaxial waveguide, respectively, are described in Chapter 5. The measurement results are compared with the theoretical estimation and the electromagnetic field simulations. In addition, the high-frequency test reveals that the first prototype stripline BPM does not provide su cient suppression of the 12 GHz PETS RF interference. An additional study proposed several modifications and guidelines for a second prototype stripline BPM. Finally, Chapter 6 presents the beam tests of the prototype stripline BPM at the CLIC Test Facility 3 (CTF3) in the Test Beam Line (TBL), a scaled version of the CLIC Drive Beam decelerator. Two types of tests were performed: linearity/sensivity and resolution. These results are compared to the ones in the laboratory characterization tests. An upper bound of the resolution is estimated performing a Singular Value Decomposition (SVD) analysis. / [ES] El Colisionador Lineal Compacto (Compact Linear Collider, CLIC), un colisionador de electrones y positrones concebido en el CERN para el estudio de la Física de Altas Energías en la región de los TeV, se basa en un principio de funcionamiento de doble haz: en lugar de emplear elementos activos (klystrons) para proporcionar la potencia RF requerida para acelerar el haz principal (Main Beam, MB), ésta se obtiene de la deceleración de un haz secundario (Drive Beam, DB), de alta corriente y energía moderada, en las llamadas estructuras de extracción y transferencia de potencia (Power Extraction and Transfer Structures, PETS). Estas estructuras emiten una señal interferente RF de más de 130 MW de potencia a 12 GHz, que, por estar localizada en una frecuencia superior a la de corte del modo fundamental en el tubo de vacío del haz (7.6 GHz), se propaga por éste hacia los dispositivos adyacentes, entre los cuales se encuentran los sistemas de monitorización de la posición (Beam Position Monitor, BPM). De acuerdo con el informe conceptual de diseño de CLIC (Conceptual Design Report, CDR) , un sistema eficiente de monitorización de la posición del haz en el decelerador del haz secundario deberá cumplir los siguientes requisitos: - Debe ser lo más sencillo y económico posible, ya que se precisan 41580 unidades: el 75% de todos los BPMs de CLIC. - El procesado de señal en el sistema de adquisición deberá ser inmune a la interferencia generada en las PETS. Esto excluye la solución habitual de procesar las señales del BPM a la frecuencia de pulsado del haz (12 GHz). - La señal de posición resultante del procesado debe ser capaz de detectar cambios en la posición del haz de duración igual o mayor a 10 ns (resolución temporal). - La resolución espacial requerida es de 2 um para un tubo de vacío de 23 mm de diámetro, con una calibración precisa. - Amplio rango dinámico: el sistema electrónico de adquisición del BPM debe poder resistir los altos valores de señal provocados por los casos de desviación extrema del haz nominal (se contempla una desviación máxima de la mitad del radio del tubo), así como detectar las señales inducidas por las configuraciones de haz con menor carga de todas las previstas, cuyos niveles serán muy débiles. / [CAT] El Col·lisionador Lineal Compacte (Compact Linear Collider, CLIC), un col·lisionador d'electrons i positrons concebut per l'estudi de la Física d'Altes Energies a la regió dels TeV (energía del centre de massa), es basa en un principi de funcionament de doble feix:en lloc de fer servir elements actius (klystrons) per proporcionar la potència RF requerida per accelerar el feix principal (Main Beam, MB), aquesta s'obtè de la desacceleració d'un feix secundari (Drive Beam, DB), d'alt corrent i energia moderada, a les anomenades estructures d'extracció i transferència de potència (Power Extraction and Transfer Structures, PETS). Aquestes estructures emeten una senyal interferent RF de més de 130 MW de potència a 12 GHz, que, pel fet d'estar localitzada a una freqüència superior a la de tall del mode fonamental al tub de buit del feix (7.6 GHz), es propaga a través d'aquest fins els dispositius adjacents, entre els quals trobem els sistemes de monitorització de la posició (Beam Position Monitor, BPM). D'acord amb l'informe conceptual de disseny de CLIC (Conceptual Design Report, CDR), un sistema eficient de monitorització de la posició del feix al desaccelerador del feix secundari haurà de complir els següents requisits: ¿ - Ha de ser el més senzill i econòmic possible, ja que es necessiten 41580 unitats: el 75% de tots els BPMs de CLIC. ¿ - El processat de la senyal al sistema d'adquisició haurà de ser inmune a la interferència generada als PETS. Això exclou la solució habitual de processar les senyals del BPM a la freqüència de pulsacions del feix (12 GHz). ¿- La senyal de posició resultant del processat ha de ser capaç de detectar canvis a la posició del feix de durada igual o més gran que 10 ns (resolució temporal). ¿- La resolució espaial necessària és de 2 um per a un tub de buit de 23 mm de diàmetre. ¿- Ampli rang dinàmic: el sistema electrònic d'adquisició del BPM ha de poder processar senyals amb nivells extrems, induïdes per feixos de molt alt (100 A) i molt baix (3 A) corrent. / Benot Morell, A. (2016). Beam position monitoring in the clic drive beam decelerator using stripline technology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64067 / TESIS
9

Development of the Beam Position Monitors for the Diagnostics of the Test Beam Line in the CTF3 at CERN

García Garrigós, Juan José 05 December 2013 (has links)
The work for this thesis is in line with the field of Instrumentation for Particle Accelerators, so called Beam Diagnostics. It is presented the development of a series of electro-mechanical devices called Inductive Pick-Ups (IPU) for Beam Position Monitoring (BPM). A full set of 17 BPM units (16 + 1 spare), named BPS units, were built and installed into the Test Beam Line (TBL), an electron beam decelerator, of the 3rd CLIC Test Facility (CTF3) at CERN ¿European Organization for the Nuclear Research¿. The CTF3, built at CERN by an international collaboration, was meant to demonstrate the technical feasibility of the key concepts for CLIC ¿Compact Linear Collider¿ as a future linear collider based on the novel two-beam acceleration scheme, and in order to achieve the next energy frontier for a lepton collider in theMulti-TeV scale. Modern particle accelerators and in particular future colliders like CLIC requires an extreme alignment and stabilization of the beam in order to enhance its quality, which rely heavily on a beam based alignment techniques. Here the BPMs, like the BPS-IPU, play an important role providing the beam position with precision and high resolution, besides a beam current measurement in the case of the BPS, along the beam lines. The BPS project carried out at IFIC was mainly developed in two phases: prototyping and series production and test for the TBL. In the first project phase two fully functional BPS prototypes were constructed, focusing in this thesis work on the electronic design of the BPS on-board PCBs (Printed Circuit Boards) which are based on transformers for the current sensing and beam position measurement. Furthermore, it is described the monitor mechanical design with emphasis on all the parts directly involved in its electromagnetic functioning, as a result of the coupling of the EM fields generated by the beam with those parts. For that, it was studied its operational parameters, according the TBL specifications, and it was also simulated a new circuital model reproducing the BPS monitor frequency response for its operational bandwidth (1kHz-100MHz). These prototypes were initially tested in the laboratories of the BI-PI section¿Beam Instrumentation - Position and Intensity¿ at CERN. In the second project phase the BPS monitor series, which were built based on the experience acquired during the prototyping phase, the work was focused on the realization of the characterization tests to measure the main operational parameters of each series monitor, for which it was designed and constructed two test benches with different purposes and frequency regions. The first one is designed to work in the low frequency region, between 1kHz-100MHz, in the time scale of the electron beam pulse with a repetition period of 1s and an approximate duration of 140ns. This kind of test setups called Wire Test-bench are commonly used in the accelerators instrumentation field in order to determine the characteristic parameters of a BPM (or pick-up) like its linearity and precision in the position measurement, and also its frequency response (bandwidth). This is done by emulating a low current intensity beam with a stretched wire carrying a current signals which can be precisely positioned with respect the device under test. This test bench was specifically made for the BPS monitor and conceived to perform the measurement data acquisition in an automated way, managing the measurement equipment and the wire positioning motors controller from a PC workstation. Each one of the BPS monitors series were characterized by using this system at the IFIC labs, and the test results and analysis are presented in this work. On the other hand, the high frequency tests, above the X band in the microwave spectrum and at the time scale of the micro-bunch pulses with a bunching period of 83ps (12GHz) inside a long 140ns pulse, were performed in order to measure the longitudinal impedance of the BPS monitor. This must be low enough in order to minimize the perturbations on the beam produced at crossing the monitor, which affects to its stability during the propagation along the line. For that, it was built the high frequency test bench as a coaxial waveguide structure of 24mm diameter matched at 50¿ and with a bandwidth from 18MHz to 30GHz, which was previously simulated, and having room in the middle to place the BPS as the device under test. This high frequency test bench is able to reproduce the TEM (Transversal Electro-Magnetic) propagative modes corresponding to an ultra-relativistic electron beam of 12GHz bunching frequency, so that the Scattering parameters can be measured to obtain the longitudinal impedance of the BPS in the frequency range of interest. Finally, it is also presented the results of the beam test made in the TBL line, with beam currents from 3.5A to 13A (max. available at the moment of the test). In order to determine the minimum resolution attainable by a BPS monitor in the measurement of the beam position, being the device figure of merit, with a resolution goal of 5¿m at maximum beam current of 28A according to the TBL specifications. / García Garrigós, JJ. (2013). Development of the Beam Position Monitors for the Diagnostics of the Test Beam Line in the CTF3 at CERN [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34327 / TESIS
10

Řízení a diagnostika elektronového svazku pro pokročilé technologie / Electron Beam Control and Diagnostics for Advanced Technologies

Zobač, Martin January 2010 (has links)
The thesis deals with problems of control and diagnostics of electron beam technological devices which use electron beam for localised intensive heating of a material. A brief description of the electron beam welder MEBW-60/2 is included; the author has participated on its development and implementation. Main topics are the analysis of deflection system properties and the measurement of current distribution of the beam (so-called beam profiles). Geometrical aberrations, hysteresis, stability and dynamics of a single-stage magnetic x-y deflection system are described. Suitable measurement procedures and correction methods are introduced. Methods of transverse and longitudinal beam profile acquisition is presented using successive sampling of the local current density of the beam by a modified Faraday cup. The data processing and evaluation of characteristic beam parameters are shown. The presented methods were verified by fourteen experiments using the electron beam welder. The methods have proven to be useful in practical evaluation of the device properties.

Page generated in 0.2898 seconds