• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving and Extending Behavioral Animation Through Machine Learning

Dinerstein, Jonathan J. 20 April 2005 (has links) (PDF)
Behavioral animation has become popular for creating virtual characters that are autonomous agents and thus self-animating. This is useful for lessening the workload of human animators, populating virtual environments with interactive agents, etc. Unfortunately, current behavioral animation techniques suffer from three key problems: (1) deliberative behavioral models (i.e., cognitive models) are slow to execute; (2) interactive virtual characters cannot adapt online due to interaction with a human user; (3) programming of behavioral models is a difficult and time-intensive process. This dissertation presents a collection of papers that seek to overcome each of these problems. Specifically, these issues are alleviated through novel machine learning schemes. Problem 1 is addressed by using fast regression techniques to quickly approximate a cognitive model. Problem 2 is addressed by a novel multi-level technique composed of custom machine learning methods to gather salient knowledge with which to guide decision making. Finally, Problem 3 is addressed through programming-by-demonstration, allowing a non technical user to quickly and intuitively specify agent behavior.
2

Cognitive and Behavioral Model Ensembles for Autonomous Virtual Characters

Whiting, Jeffrey S. 08 June 2007 (has links) (PDF)
Cognitive and behavioral models have become popular methods to create autonomous self-animating characters. Creating these models presents the following challenges: (1) Creating a cognitive or behavioral model is a time intensive and complex process that must be done by an expert programmer (2) The models are created to solve a specific problem in a given environment and because of their specific nature cannot be easily reused. Combining existing models together would allow an animator, without the need of a programmer, to create new characters in less time and would be able to leverage each model's strengths to increase the character's performance, and to create new behaviors and animations. This thesis provides a framework that can aggregate together existing behavioral and cognitive models into an ensemble. An animator only has to rate how appropriately a character performed and through machine learning the system is able to determine how the character should act given the current situation. Empirical results from multiple case studies validate the approach taken.

Page generated in 0.126 seconds