• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deficiency in MBD2 is Sufficient to Cause Behavioral Impairments in Mice

Zavalishina, Lidiya 31 December 2010 (has links)
Methyl-CpG-binding proteins (MeCP2, MBD1-MBD3) recruit transcriptional co-repressor molecules to methylated regions and silence transcription. The role of MBD2 in regulating brain function and behavior remains largely unexamined. To begin elucidating whether MBD2 influences neural function, I assessed the behavioral performance of Mbd2 null mice, compared their hippocampal electroencephalographic activity during exploration, and performed protein and mRNA expression assessments. The results indicate that mutant mice display a heightened anxiety-like behavior, diminished explorative activity and reduced sociability compared to wild-type mice. However, these behavioral differences were not paralleled by neurophysiological impairments. Mutant hippocampal and cortical samples display significantly elevated MeCP2 mRNA levels. Yet, MeCP2 protein expression did not mirror the mRNA profile and instead was significantly reduced. Glucocorticoid Receptor mRNA levels were significantly reduced in the hippocampus and cortex regions of Mbd2 null brains. The loss of MBD2 is sufficient to induce behavioral impairments in mice without introducing gross deficits in hippocampal neurophysiology.
2

Deficiency in MBD2 is Sufficient to Cause Behavioral Impairments in Mice

Zavalishina, Lidiya 31 December 2010 (has links)
Methyl-CpG-binding proteins (MeCP2, MBD1-MBD3) recruit transcriptional co-repressor molecules to methylated regions and silence transcription. The role of MBD2 in regulating brain function and behavior remains largely unexamined. To begin elucidating whether MBD2 influences neural function, I assessed the behavioral performance of Mbd2 null mice, compared their hippocampal electroencephalographic activity during exploration, and performed protein and mRNA expression assessments. The results indicate that mutant mice display a heightened anxiety-like behavior, diminished explorative activity and reduced sociability compared to wild-type mice. However, these behavioral differences were not paralleled by neurophysiological impairments. Mutant hippocampal and cortical samples display significantly elevated MeCP2 mRNA levels. Yet, MeCP2 protein expression did not mirror the mRNA profile and instead was significantly reduced. Glucocorticoid Receptor mRNA levels were significantly reduced in the hippocampus and cortex regions of Mbd2 null brains. The loss of MBD2 is sufficient to induce behavioral impairments in mice without introducing gross deficits in hippocampal neurophysiology.
3

An Assessment of Cognitive and Sensorimotor Deficits Associated with APPsw and P301L Mouse Models of Alzheimer's Disease

Garcia, Marcos F 31 March 2003 (has links)
Behavioral characterization of animal models for Alzheimer's Disease is critical for the development of potential therapeutics and treatments against the disease. While there are several known animal models of AD, three current models--APPsw, P301L, and APPsw+P301L--have not been well characterized, if at all. This study, therefore, aimed to perform a full behavioral characterization of these three models in order to better understand the impairments associated with each one. Between 5 and 8.5 months of age, animals were behaviorally tested in a variety of sensorimotor, anxiety, and cognitive tasks. The number of tau+ neurons in the forebrains of P301L mice was then compared to their behavioral performance. Results of this study indicate that retinal degeneration (rd) seriously impairs the performance of mice in behavioral tasks. Animals that carry the homozygous allele of this mutation must, therefore, be eliminated from any such study requiring visual acuity. After this elimination, my findings indicate that APP mice are impaired in several cognitive tasks (including platform recognition, Morris maze, Y-maze, and radial-arm water maze) at a young early age (5 to 8.5 months of age). These mice have fairly normal sensorimotor function, showing significant impairment only in balance beam performance starting at 5 months. Although P301L mutant Tau mice, as a group, did not have significant impairments in any sensorimotor or cognitive task, correlation analysis revealed that higher numbers of tau+ neurons in cortex and hippocampus were associated with poorer cognitive performance. Finally, discriminant function analysis (DFA) appears able to accurately discriminate between the three transgenic groups of mice using only an 8-measure data set. In conclusion, this study provides the first comprehensive, multiple task behavioral assessment of the APPsw and P301L animal models of AD, indicating that APPsw mice are cognitively impaired at an early age while P301L mice are largely unimpaired through 8.5 months. Nonetheless, correlational analysis implicates the formation of neurofibrillary tangles in the onset of cognitive impairments. Finally, my findings recommend the continued use of DFA to determine if groups of animals, based on different transgenicity or therapeutic treatment, could be discriminated between from their behavior alone.
4

The Differential Effects of Mental Fatigue and Alcohol on Selective Attention

Bloesch, Emily Keller 01 August 2008 (has links)
Decrements in selective attention are a commonly experienced phenomenon that has practical implications for many industries. Two causes of such deficits are mental fatigue and alcohol intoxication, which impair selective attention by decreasing the efficiency of inhibitory processes. The present research examined the effects of these two factors on the selective attention subtest of the Useful Field of View test in both a baseline and an experimental session. Participants in the mental fatigue condition (n = 14) were tested while performing a divided attention task for two hours to induce mental fatigue. Those in the alcohol condition (n = 10) were tested while achieving a peak blood alcohol content of 0.05%. No differences between the two groups were observed, nor was a significant decline in selective attention observed as a result of either manipulation. The results indicate three possible explanations for this lack of a difference including a floor effect on the selective attention task, a pop-out effect in switching from the divided to the selective attention task, and an increase in attentional effort regulation due to the contrast in difficulty of the divided and selective attention tasks.

Page generated in 0.1024 seconds