• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propagation effects in optical waveguides, fibres and devices

Tomljenovic-Hanic, Snjezana, snjezana@physics.usyd.edu.au January 2003 (has links)
This thesis consist of a theoretical study of propagation effects in optical waveguides, fibres and photonic crystals, with some comparison with experiment.¶ Chapter 1 gives a brief introduction with the current view of optical components in photonic integrated circuits and issues related to the loss mechanism.¶ In Chapter 2 the characteristics of single-mode propagation and transient effects in practical square- and rectangular-core buried channel planar waveguides are quantified, assuming a cladding which is unbounded in one transverse dimension and bounded in the other. The wavelength cut-off condition for the fundamental mode is determined when the cladding index is asymmetric and composed of step-wise, uniform index regions.¶ In Chapter 3, the application of segmented reflection gratings in planar devices that can function as either a single- or two-wavelength add/drop filter is investigated and a numerical technique developed in Chapter 2 is applied to the waveguides with high extinction ratio. The role of the segmented gratings is analogous to that of a blazed grating, but they can provide a higher reflectivity level at the Bragg wavelength, eliminate back reflection into the fundamental mode and provide arbitrarily small channel spacing in the two-wavelength case.¶ Chapters 4 address the problem of bend loss in a single-mode slab waveguide. A new theoretical strategy for reducing bend loss is presented and compared to existing designs. The results obtained in this chapter are the basis for the following two chapters.¶ Chapter 5 deals with bend loss in single-mode buried channel waveguides and demonstrates that the new strategy can lead to significant bend loss reduction when compared to other strategies, and, conversely, can be used to enhance bend loss for a fixed bend radius for application to devices such as optical attenuators.¶ In Chapter 6, a novel design of a variable optical attenuator based on a bent channel waveguide is proposed, realized by applying a new strategy for bend loss control in a polymer buried channel waveguide.¶ Chapter 7 investigates effects of the additional rings in a single mode step-index fibre on bend loss. It is supported with the experimental results of Ron Bailey from Optical the Fibre Technology Centre, University in Sydney.¶ In Chapter 8, bend loss of a one-dimensional photonic crystal is quantified and compared to bend loss of a standard single-mode slab waveguide and a bend-resistant waveguide.¶
2

Investigation of the Combined Effects of Simultaneous Heating and Bending of Silica Optical Fiber

Birri, Anthony 15 August 2018 (has links)
No description available.

Page generated in 0.0447 seconds