• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of bioinformatics to investigate and analyze transposable element insertions in the genomes of caenorhabditis elegans and drosophila melanogaster, and into the target plasmid pGDV1

Julian, Andrea Marian 17 February 2005 (has links)
Transposable elements (TEs) are utilized for the creation of a wide range of transgenic organisms. However, in some systems, this technique is not very efficient due to low transposition frequencies and integration into unstable or transcriptionally inactive genomic regions. One approach to ameliorate this problem is to increase knowledge of how transposons move and where they integrate into target genomes. Most transposons do not insert randomly into their host genome, with class II TEs utilizing target sequences of between 2 – 8 bp in length, which are duplicated upon insertion. Furthermore, amongst insertion sites, certain sites are preferred for insertion and hence are classified as hot spots, while others not targeted by TEs are referred to as cold spots. The hypothesis tested in this analysis is that in addition to the primary consensus target sequence, secondary and tertiary DNA structures have a significant influence on TE target site preference. Bioinformatics was used to predict and analyze the structure of the flanking DNA around known insertion sites and cold spots for various TEs, to understand why insertion sites are used preferentially to cold spots for element integration. Hidden Markov Models were modeled and trained to analyze datasets of insertions of the P element in the Drosophila melanogaster genome, the Tc1 element in the Caenorhabditis elegans genome, and insertions of the Mos1, piggyBac and Hermes transposons into the target plasmid pGDV1. Analysis of the DNA structural profiles of the insertion sites for the P element and Hermes transposons revealed that both transposons targeted regions of DNA with a relatively high degree of bendability/flexibility at the insertion site. However, similar trends were not observed for the Tc1, Mos1 or piggyBac transposons. Hence, it is believed that the secondary structural features of DNA can contribute to target site preference for some, but not all transposable elements.
2

The importance of material properties on the bendability of Q/QT steels

Laschke, Erikka January 2012 (has links)
This master thesis work has been carried out at the company SSAB EMEA in Oxelösund which is a global leader in quenched and tempered high-strength steel. The aim is to examine the importance of the material properties for the bendability of the specific steel grade Weldox. There are many conditions for various applications such as mobile cranes and vehicles that need to be fulfilled in order for the material to be approved, where one main prerequisite is the bendability. It is very important to be able to bend the material without the occurrence of cracks. The purpose of this work has therefore been to investigate and try to find the relationship between the material properties and the critical bending radius. Furthermore has another aim been to find the most suitable treatment process for the composition of this specific steel grade.The work was divided into two parts, where the first part was to examine two equally treated Weldox 960 plates that differed significantly in properties such as bendability and toughness. In the second part seven different plates of the steel grade Weldox 1100 have been investigated where all the plates were treated in various ways. The leveling of the plates was performed in two different ways; either according to the standard leveling or to the property affected leveling (ERIK). The experimental part includes tests such as bending, hardness, toughness, tensile and inclusions measurements.The results have shown that the most significant material properties affecting the bendability are the yield strength and the purity close to the plate surface. Leveling with ERIK as the last treatment step has shown that the toughness of the material can be increased but it does not affect the bendability for these specific steel grades. Other properties such as hardness, ultimate tensile strength and elongation have no major impact on the bendability for this specific composition. The most suitable treatment proved to be tempering at 200°C as the last step in the process chain.
3

BENDING CHARACTERISTICS AND STRETCH BENDABILITY OF MONOLITHIC AND LAMINATED SHEET MATERIALS

GOVINDASAMY, GANESH NIRANJAN 11 1900 (has links)
Bending deformation characteristics of monolithic, bi-layer and tri-layer laminate sheet materials are studied using Analytical and FE models in this work. The analytical model, based on advanced theory of pure bending considers von Mises yielding, Ludwik hardening law and Bauschinger effect for various laminate constituent thickness ratios. The principal stresses and strains through the thickness and, change in relative thickness at specified bend curvatures are obtained as a function of increasing curvature during bending. Additionally, 2D and 3D finite element (FE) based models for bending are developed to overcome simplifications of the analytical models such as the effect of specimen width on strain distribution. Further, to experimentally assess and validate bending characteristics from the analytical models, a new experimental bend test-jig that is closer to pure bending is developed. The experimental set-up is an open concept design that allows access to the tensile surface as well as through-thickness region for recording and analyzing strains using an online strain mapping system based on digital image correction (DIC) method. Experimental bending is carried out on annealed AA2024 monolithic aluminum alloy sheet and Steel/Aluminum (SS400/AA1050) bi-layer laminate sheet at different thickness ratios. The model and experiments are studied in terms of stress and strain distribution as a function of relative thickness for different clad to matrix thickness ratios. Further the case of simultaneous bending and stretching over small radius bending is analyzed for limit strain prediction using an existing limit strain criterion based on major strain acceleration. An angular stretch bend test is used to subject an hour-glass shaped AA20240-O aluminum sheet specimen to simultaneous stretching and bending deformation while continuously imaging the critical tensile surface region using an optical camera. The strain development in the critical region is subsequently analyzed using digital image correlation (DIC) method. The effect of DIC parameters such as facet size, facet step, and effect of curve fitting procedures on limit strain are studied. An average limit strain of 0.2 is obtained for AA2024 for a facet size of 9x9 pixels, a facet step of 5 pixels and by applying a 5th order polynomial curve fit to the strain data. The results obtained are comparable with a limit strain of the material. The results are compared with a commercially available tri-layer laminate sheet material Alclad 2024 that has 80 μm thin layer of soft AA1100 on both surfaces of harder AA2024 core material. An improved stretch bendability limit strain of 0.24 for Alclad 2024 tri-layer specimen was predicted by utilizing the major strain acceleration criterion. The thin AA1100 protective layer produced a positive effect on the stretch bendability of Alclad 2024 when compared with monolithic AA2024 specimen. / Thesis / Doctor of Philosophy (PhD)
4

Effect of microstructure on the mechanical properties and bendability of direct-quenched ultrahigh-strength steels

Kaijalainen, A. (Antti) 08 November 2016 (has links)
Abstract The effect of austenite pancaking in the non-recrystallisation regime on microstructure and mechanical properties, especially bendability, was investigated in direct-quenched ultrahigh-strength strip steels with martensitic-bainitic microstructures. Lowering the finishing rolling temperature (FRT) increased total reduction in the non-recrystallisation region (R tot). Niobium microalloying increased Rtot while variations in C, Mn and Mo did not affect Rtot to the same extent as Nb. A decrease in the FRT increased the incidence of softer microstructures such as ferrite and granular bainite in the subsurface layers. The microstructures at the centreline were comprised of auto-tempered martensite with some bainite. An increase in Rtot strengthens the intensities of the ~{554}<225>α and ~{112}<110>α texture components at the centreline and the components ~{112}<111>α and ~{110}<112>α - {110}<111>α at the strip subsurface. Bendability is poorer with the bend axis perpendicular rather than parallel to the rolling direction (RD) and is further impaired with increasing hardness below the sheet surface. An intense ~{112}<111>α shear texture combined with upper bainite containing MA islands in the subsurface region is shown to be detrimental to bendability when the bend axis is perpendicular to the RD. This anisotropy of bendability can be explained by the appearance of geometric softening in grain clusters belonging to this texture component when the bend axis is perpendicular to the RD. Shear localisation is prevented, however, by the presence of a sufficiently thick subsurface microstructure having adequate work hardening capacity, i.e., ferrite + granular bainite rather than ferrite + upper bainite. The strain required to initiate strain localisation can be increased and good bendability thereby achieved—even in the presence of detrimental texture components—by ensuring the presence of a sufficiently soft subsurface layer extending to a depth of approximately 5% of the total sheet thickness. The above beneficial microstructures can be obtained and good bendability ensured in direct-quenched strip steel with a yield stress above 900 MPa together with good impact toughness, provided a suitable combination of chemical composition and processing parameters is selected and sufficient attention is paid to steelmaking operations to obtain a proper inclusion structure. / Tiivistelmä Austeniitin muokkauksen vaikutusta mikrorakenteeseen ja mekaanisiin ominaisuuksiin, erityisesti särmättävyyteen, tutkittiin suorasammutetuilla martensiittis-bainiittisilla suurlujuusnauhateräksillä. Kuumavalssauksen lopetuslämpötilan lasku kasvatti austeniitin kokonaisreduktiota ei-rekristallisaatioalueella. Mikroseostus niobilla kasvatti myös kokonaisreduktiota, kun taasen muutokset C-, Mn- ja Mo -pitoisuuksissa eivät vaikuttaneet yhtä voimakkaasti. Valssauksen lopetuslämpötilan lasku kasvatti pehmeämpien mikrorakenteiden, kuten ferriitin ja granulaarisen bainiitin, määrää nauhan pintakerroksessa. Terästen keskilinjan mikrorakenteet koostuivat pääasiassa itsepäässeestä martensiitista sekä pienestä määrästä bainiittia. Kokonaisreduktion kasvu voimisti ~{554}<225>α - ja ~{112}<110>α -tekstuurikomponentteja keskilinjalla sekä ~{112}<111>α- ja ~{110}<112>α - {110}<111>α -komponentteja nauhan pintakerroksessa. Särmättävyys oli huonompi särmän ollessa poikittain valssaussuuntaan nähden kuin pitkittäin. Pintakerroksen kovuuden kasvu heikensi särmättävyyttä. Pintakerroksen voimakas ~{112}<111>α -leikkaustekstuuri, yläbainiitin ja MA-saarekkeiden läsnä ollessa, osoittautui haitalliseksi särmän ollessa poikittain valssaussuuntaan nähden. Särmättävyyden anisotrooppisuus voidaan selittää geometrisella pehmenemisellä rakeissa, joissa kyseinen tekstuurikomponentti on voimakas. Leikkausmyötymän paikallistuminen estyy, kun pinnassa on riittävän paksu hyvän muokkauslujittumiskyvyn omaava kerros, mikä sisältää esim. ferriittiä ja granulaarista bainiittia, mutta ei ferriittiä ja yläbainiittia. Särmättävyys osoittautui pysyvän hyvänä huolimatta haitallisesta tekstuurikomponentista, kun pehmeä pintakerros ulottui noin 5 % syvyydelle levyn paksuudesta. Edellä mainitut mikrorakenteet ja hyvä särmättävyys voidaan saavuttaa suorasammutetuilla yli 900 MPa myötölujuuden nauhateräksillä yhdessä hyvän iskusitkeyden kanssa, kunhan valitaan sopiva kemiallisen koostumuksen ja valmistusparametrien yhdistelmä sekä kiinnitetään huomiota teräksen sulkeumapuhtauteen.
5

Structural Properties Of Genome Sequences - Application To Promoter Prediction

Kanhere, Aditi 02 1900 (has links) (PDF)
No description available.

Page generated in 0.0649 seconds