Spelling suggestions: "subject:"benjamin"" "subject:"benjaminian""
1 |
Limits of Rauzy Graphs of Low-Complexity WordsDrummond, Blair 09 September 2019 (has links)
We consider Benjamini-Schramm limits of Rauzy Graphs of low-complexity words. Low-complexity words are infinite words (over a finite alphabet), for which the number of subwords of length n is bounded by some Kn --- examples of such a word include the Thue-Morse word 01101001... and the Fibonacci word. Rauzy graphs Rn (omega) have the length n subwords of omega as vertices, and the oriented edges between vertices indicate that two words appear immediately adjacent to each other in omega (with overlap); the edges are also equipped with labels, which indicate what "new letter" was appended to the end of the terminal vertex of an edge. In a natural way, the labels of consecutive edges in a Rauzy graph encode subwords of omega. The Benjamini-Schramm limit of a sequence of graphs is a distribution on (possibly infinite) rooted graphs governed by the convergence in distribution of random neighborhoods of the sequence of finite graphs.
In the case of Rauzy graphs without edge-labelings, we establish that the Rauzy graphs of aperiodic low-complexity words converge to the line graph in the Benjamini-Schramm sense. In the same case, but for edge-labelled Rauzy graphs, we also prove that that the limit exists when the frequencies of all subwords in the infinite word, omega, are well defined (when the subshift of omega is uniquely ergodic), and we show that the limit can be identified with the unique ergodic measure associated to the subshift generated by the word. The eventually periodic (i.e. finite) cases are also shown. Finally, we show that for non-uniquely ergodic systems, the Benjamini-Schramm limit need not exist ---though it can in some instances--- and we provide examples to demonstrate the variety of possible behaviors.
|
2 |
Inférence de graphes par une procédure de test multiple avec application en Neuroimagerie / Graph inference by multiple testing with application to NeuroimagingRoux, Marine 24 September 2018 (has links)
Cette thèse est motivée par l’analyse des données issues de l’imagerie par résonance magnétique fonctionnelle (IRMf). La nécessité de développer des méthodes capables d’extraire la structure sous-jacente des données d’IRMf constitue un challenge mathématique attractif. A cet égard, nous modélisons les réseaux de connectivité cérébrale par un graphe et nous étudions des procédures permettant d’inférer ce graphe.Plus précisément, nous nous intéressons à l’inférence de la structure d’un modèle graphique non orienté par une procédure de test multiple. Nous considérons deux types de structure, à savoir celle induite par la corrélation et celle induite par la corrélation partielle entre les variables aléatoires. Les statistiques de tests basées sur ces deux dernières mesures sont connues pour présenter une forte dépendance et nous les supposerons être asymptotiquement gaussiennes. Dans ce contexte, nous analysons plusieurs procédures de test multiple permettant un contrôle des arêtes incluses à tort dans le graphe inféré.Dans un premier temps, nous questionnons théoriquement le contrôle du False Discovery Rate (FDR) de la procédure de Benjamini et Hochberg dans un cadre gaussien pour des statistiques de test non nécessairement positivement dépendantes. Nous interrogeons par suite le contrôle du FDR et du Family Wise Error Rate (FWER) dans un cadre gaussien asymptotique. Nous présentons plusieurs procédures de test multiple, adaptées aux tests de corrélations (resp. corrélations partielles), qui contrôlent asymptotiquement le FWER. Nous proposons de plus quelques pistes théoriques relatives au contrôle asymptotique du FDR.Dans un second temps, nous illustrons les propriétés des procédures contrôlant asymptotiquement le FWER à travers une étude sur simulation pour des tests basés sur la corrélation. Nous concluons finalement par l’extraction de réseaux de connectivité cérébrale sur données réelles. / This thesis is motivated by the analysis of the functional magnetic resonance imaging (fMRI). The need for methods to build such structures from fMRI data gives rise to exciting new challenges for mathematics. In this regards, the brain connectivity networks are modelized by a graph and we study some procedures that allow us to infer this graph.More precisely, we investigate the problem of the inference of the structure of an undirected graphical model by a multiple testing procedure. The structure induced by both the correlation and the partial correlation are considered. The statistical tests based on the latter are known to be highly dependent and we assume that they have an asymptotic Gaussian distribution. Within this framework, we study some multiple testing procedures that allow a control of false edges included in the inferred graph.First, we theoretically examine the False Discovery Rate (FDR) control of Benjamini and Hochberg’s procedure in Gaussian setting for non necessary positive dependent statistical tests. Then, we explore both the FDR and the Family Wise Error Rate (FWER) control in asymptotic Gaussian setting. We present some multiple testing procedures, well-suited for correlation (resp. partial correlation) tests, which provide an asymptotic control of the FWER. Furthermore, some first theoretical results regarding asymptotic FDR control are established.Second, the properties of the multiple testing procedures that asymptotically control the FWER are illustrated on a simulation study, for statistical tests based on correlation. We finally conclude with the extraction of cerebral connectivity networks on real data set.
|
3 |
Benjamini-Schramm Convergence of Normalized Characteristic Numbers of Riemannian ManifoldsLuckhardt, Daniel 05 June 2018 (has links)
No description available.
|
4 |
Self-Normalized Sums and Directional ConclusionsJonsson, Fredrik January 2012 (has links)
This thesis consists of a summary and five papers, dealing with self-normalized sums of independent, identically distributed random variables, and three-decision procedures for directional conclusions. In Paper I, we investigate a general set-up for Student's t-statistic. Finiteness of absolute moments is related to the corresponding degree of freedom, and relevant properties of the underlying distribution, assuming independent, identically distributed random variables. In Paper II, we investigate a certain kind of self-normalized sums. We show that the corresponding quadratic moments are greater than or equal to one, with equality if and only if the underlying distribution is symmetrically distributed around the origin. In Paper III, we study linear combinations of independent Rademacher random variables. A family of universal bounds on the corresponding tail probabilities is derived through the technique known as exponential tilting. Connections to self-normalized sums of symmetrically distributed random variables are given. In Paper IV, we consider a general formulation of three-decision procedures for directional conclusions. We introduce three kinds of optimality characterizations, and formulate corresponding sufficiency conditions. These conditions are applied to exponential families of distributions. In Paper V, we investigate the Benjamini-Hochberg procedure as a means of confirming a selection of statistical decisions on the basis of a corresponding set of generalized p-values. Assuming independence, we show that control is imposed on the expected average loss among confirmed decisions. Connections to directional conclusions are given.
|
Page generated in 0.0455 seconds