1 |
Comparison of BV Norms in Weighted Euclidean Spaces and Metric Measure SpacesCAMFIELD, CHRISTOPHER SCOTT 25 August 2008 (has links)
No description available.
|
2 |
Benjamini-Schramm Convergence of Normalized Characteristic Numbers of Riemannian ManifoldsLuckhardt, Daniel 05 June 2018 (has links)
No description available.
|
3 |
On symmetric transformations in metric measured geometrySosa Garciamarín, Gerardo 15 November 2017 (has links)
The central objects of study in this thesis are metric measure spaces. These are metric spaces which are endowed with a reference measure and enriched with basic topological, geometric and measure theoretical properties. The objective of the first part of the work is to characterize metric measure spaces whose symmetry groups admit a differential structure making them Lie groups. The second part is concerned with the analysis of the induced geometry of spaces admitting non-trivial symmetries. More in detail, it is shown that in many cases synthetic notions of Ricci curvature lower bounds are inherited by quotient spaces.
|
4 |
Discrete Approximations of Metric Measure Spaces with Controlled GeometryLopez, Marcos D. 19 October 2015 (has links)
No description available.
|
5 |
Selected Topics in Analysis in Metric Measure SpacesCapolli, Marco 02 February 2021 (has links)
The thesis is composed by three sections, each devoted to the study of a specific problem in the setting of PI spaces. The problem analyzed are: a C^m Lusin approximation result for horizontal curves in the Heisenberg group, a limit result in the spirit of Burgain-Brezis-Mironescu for Orlicz-Sobolev spaces in Carnot groups and the differentiability of Lipschitz functions in Laakso spaces.
|
6 |
Quasi transformées de Riesz, espaces de Hardy et estimations sous-gaussiennes du noyau de la chaleur / Quasi Riesz transforms, Hardy spaces and generalized sub-Gaussian heat kernel estimatesChen, Li 24 April 2014 (has links)
Dans cette thèse nous étudions les transformées de Riesz et les espaces de Hardy associés à un opérateur sur un espace métrique mesuré. Ces deux sujets sont en lien avec des estimations du noyau de la chaleur associé à cet opérateur. Dans les Chapitres 1, 2 et 4, on étudie les transformées quasi de Riesz sur les variétés riemannienne et sur les graphes. Dans le Chapitre 1, on prouve que les quasi transformées de Riesz sont bornées dans Lp pour 1<p<2. Dans le Chapitre 2, on montre que les quasi transformées de Riesz est aussi de type faible (1,1) si la variété satisfait la propriété de doublement du volume et l'estimation sous-gaussienne du noyau de la chaleur. On obtient des résultats analogues sur les graphes dans le Chapitre 4. Dans le Chapitre 3, on développe la théorie des espaces de Hardy sur les espaces métriques mesurés avec des estimations différentes localement et globalement du noyau de la chaleur. On définit les espaces de Hardy par les molécules et par les fonctions quadratiques. On montre tout d'abord que ces deux espaces H1 sont les mêmes. Puis, on compare l'espace Hp défini par par les fonctions quadratiques et Lp. On montre qu'ils sont équivalents. Mais on trouve des exemples tels que l'équivalence entre Lp et Hp défini par les fonctions quadratiques avec l'homogénéité t2 n'est pas vraie. Finalement, comme application, on montre que les quasi transformées de Riesz sont bornées de H1 dans L1 sur les variétés fractales. Dans le Chapitre 5, on prouve des inégalités généralisées de Poincaré et de Sobolev sur les graphes de Vicsek. On montre aussi qu'elles sont optimales. / In this thesis, we mainly study Riesz transforms and Hardy spaces associated to operators. The two subjects are closely related to volume growth and heat kernel estimates. In Chapter 1, 2 and 4, we study Riesz transforms on Riemannian manifold and on graphs. In Chapter 1, we prove that on a complete Riemannian manifold, the quasi Riesz transform is always Lp bounded on for p strictly large than 1 and no less than 2. In Chapter 2, we prove that the quasi Riesz transform is also weak L1 bounded if the manifold satisfies the doubling volume property and the sub-Gaussian heat kernel estimate. Similarly, we show in Chapter 4 the same results on graphs. In Chapter 3, we develop a Hardy space theory on metric measure spaces satisfying the doubling volume property and different local and global heat kernel estimates. Firstly we define Hardy spaces via molecules and via square functions which are adapted to the heat kernel estimates. Then we show that the two H1 spaces via molecules and via square functions are the same. Also, we compare the Hp space defined via square functions with Lp. The corresponding Hp space for p large than 1 defined via square functions is equivalent to the Lebesgue space Lp. However, it is shown that in this situation, the Hp space corresponding to Gaussian estimates does not coincide with Lp any more. Finally, as an application of this Hardy space theory, we proved that quasi Riesz transforms are bounded from H1 to L1 on fractal manifolds. In Chapter 5, we consider Vicsek graphs. We prove generalised Poincaré inequalities and Sobolev inequalities on Vicsek graphs and we show that they are optimal.
|
7 |
Prostory Sobolevova typu na metrických prostorech s mírou / Sobolev-type Spaces on Metric Measure SpacesMalý, Lukáš January 2014 (has links)
Title: Sobolev-Type Spaces on Metric Measure Spaces Author: RNDr. Lukáš Malý Department: Department of Mathematical Analysis Supervisor: Prof. RNDr. Luboš Pick, CSc., DSc., Department of Mathematical Analysis Abstract: is thesis focuses on function spaces related to rst-order analysis in abstract metric measure spaces. In metric spaces, we can replace distributional gra- dients, whose de nition depends on the linear structure of Rn , by upper gradients that control the functions' behavior along all recti able curves. is gives rise to the so-called Newtonian spaces. e summability condition, considered in the thesis, is expressed using a general Banach function lattice quasi-norm and so an extensive framework is built. Sobolev-type spaces (mainly based on the Lp norm) on metric spaces, and Newtonian spaces in particular, have been under intensive study since the mid- s. Standard toolbox for the theory is set up in this general setting and Newto- nian spaces are proven complete. Summability of an upper gradient of a function is shown to guarantee the function's absolute continuity on almost all curves. Ex- istence of a unique minimal weak upper gradient is established. Regularization of Newtonian functions via Lipschitz truncations is discussed in doubling Poincaré spaces using weak boundedness of maximal...
|
8 |
Some variational and geometric problems on metric measure spacesVedovato, Mattia 07 April 2022 (has links)
In this Thesis, we analyze three variational and geometric problems, that extend classical Euclidean issues of the calculus of variations to more general classes of spaces. The results we outline are based on the articles [Ved21; MV21] and on a forthcoming joint work with Nicolussi Golo and Serra Cassano. In the first place, in Chapter 1 we provide a general introduction to metric measure spaces and some of their properties. In Chapter 2 we extend the classical Talenti’s comparison theorem for elliptic equations to the setting of RCD(K,N) spaces: in addition the the generalization of Talenti’s inequality, we will prove that the result is rigid, in the sense that equality forces the space to have a symmetric structure, and stable. Chapter 3 is devoted to the study of the Bernstein problem for intrinsic graphs in the first Heisenberg group H^1: we will show that under mild assumptions on the regularity any stationary and stable solution to the minimal surface equation needs to be intrinsically affine. Finally, in Chapter 4 we study the dimension and structure of the singular set for p-harmonic maps taking values in a Riemannian manifold.
|
9 |
Neabsolutně konvergentní integrály / Nonabsolutely convergent integralsKuncová, Kristýna January 2019 (has links)
Title: Nonabsolutely convergent integrals Author: Krist'yna Kuncov'a Department: Department of Mathematical Analysis Supervisor: prof. RNDr. Jan Mal'y, DrSc., Department of Mathematical Analysis Abstract: In this thesis we develop the theory of nonabsolutely convergent Hen- stock-Kurzweil type packing integrals in different spaces. In the framework of metric spaces we define the packing integral and the uniformly controlled inte- gral of a function with respect to metric distributions. Applying the theory to the notion of currents we then prove a generalization of the Stokes theorem. In Rn we introduce the packing R and R∗ integrals, which are defined as charges - additive functionals on sets of bounded variation. We provide comparison with miscellaneous types of integrals such as R and R∗ integral in Rn or MCα integral in R. On the real line we then study a scale of integrals based on the so called p-oscillation. We show that our indefinite integrals are a.e. approximately differ- entiable and we give comparison with other nonabsolutely convergent integrals. Keywords: Nonabsolutely convergent integrals, BV sets, Henstock-Kurzweil in- tegral, Divergence theorem, Analysis in metric measure spaces 1
|
Page generated in 0.0555 seconds